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Abstract—Increasingly severe I/O bottlenecks on High-End 
Computing machines are prompting scientists to process 
simulation output data online while simulations are running 
and before storing data on disk. There are several options to 
place data analytics along the I/O path: on compute nodes, on 
separate nodes dedicated to analytics, or after data is stored on 
persistent storage. Since different placements have different 
impact on performance and cost, there is a consequent need for 
flexibility in the location of data analytics. The FlexIO 
middleware described in this paper makes it easy for scientists 
to obtain such flexibility, by offering simple abstractions and 
diverse data movement methods to couple simulation with 
analytics. Various placement policies can be built on top of 
FlexIO to exploit the trade-offs in performing analytics at 
different levels of the I/O hierarchy. Experimental results 
demonstrate that FlexIO can support a variety of simulation 
and analytics workloads at large scale through flexible 
placement options, efficient data movement, and dynamic 
deployment of data manipulation functionalities. 
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I.  INTRODUCTION 
Peta-scale scientific simulations running on high end 

computing machines in domains like Fusion [22], 
Astrophysics [14], and Combustion [20] now routinely 
generate terabytes of data in a single run, and these data 
volumes are only expected to increase. Since this massive 
data is key to scientific discovery, the ability to rapidly store, 
move, analyze, and visualize data is critical for scientists’ 
productivity. Yet there are already serious I/O bottlenecks on 
current HEC machines, and movement toward the Exascale 
is further accelerating this trend. 

Online data analytics has emerged as an effective way to 
overcome the I/O bottleneck for scientific applications 
running at the Peta-Scale and beyond. By processing data as 
it moves through the I/O path, online analytics can extract 
valuable insights from live simulation output in a timely 
manner, better prepare data for subsequent deep analysis and 
visualization, and gain improved performance and reduced 
data movement cost (both in time and in power) compared to 
solely file-based offline approaches. The utility of the 
approach is evident from its wide adoption of leading 
scientific applications like the S3D combustion simulation 
[49], the GTC [22] and GTS [47] fusion simulations, 
Trillions [27], CTH [29], and FLASH [42].  

For real-time processing of the outputs generated by 
large scale simulations, a key problem to address is “where” 

analytics are placed along the I/O path: on compute nodes 
integrated with application codes, on compute nodes as 
separate software components, on nodes dedicated to 
analytics (also termed ’staging nodes’), or offline (after data 
is placed into persistent storage) (as illustrated in Figure 1). 
Placing data analytics involves deciding the resources to 
allocate to analytics computation and realizing the data 
movements between simulation and analytics. Previous 
experimental results and analytical models [52] show that 
analytics placement can significantly impact the performance 
(e.g., runtime) and cost (e.g., CPU hours) of the coupled 
simulation and analytics and that the best placement depends 
on the particular analytics codes, data volumes, scale of 
operation, and machine characteristics. The consequent 
insight is that no single, specific placement will be ‘best’ for 
all applications and analytics. 

Such variation has important implications to both 
scientists and the software that supports analytics. Scientists 
desire the performance benefit from good placement, but it is 
a burden for them to tune placement every time a different 
analytics code is run, especially when this requires 
significant coding effort. There is a need, therefore, for 
infrastructure that makes it easy to decide, enforce, change, 
and tune analytics placement. At the same time, if such an 
analytics software infrastructure aims to support a broad 
range of simulations and analytics, lacking placement 
flexibility limits its applicability, since fixed placements may 
cause negative or even disastrous impact on application 
performance at large scale. Flexible placement, therefore, is 
a critical element of analytics infrastructure. 

A. Placement Support in Existing Systems 
A number of systems and tools have been developed to 

support online analytics and visualization.   
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Figure 1.   Analytics Placement Options along I/O Path. 
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1) Analytics and Visualization Libraries. ParaView’s co-
processing library [13], VisIt’s remote visualization [43], and 
other online visualization work [41][49] offer software 
libraries with collections of analytics and visualization 
routines. Although those libraries do not impose restrictions 
on where they can be executed and can be directly invoked 
as function calls, the libraries must rely on external data 
movement support to run in staging nodes or on dedicated 
compute node cores, termed ‘helper’ cores in Figure 1. 

2) Helper Core Processing. Functional partitioning [24], 
software accelerator [35], and Damaris [10] perform file I/O 
and analytics on dedicated cores in compute nodes and 
leverage shared memory to pass data. Such placement can be 
beneficial for some cases (e.g., when the simulation cannot 
scale to use all cores), but its applicability is restricted by the 
memory space on compute nodes made available by the 
simulation.  

3) Staging Area Processing. Data Services [2], Nessie 
[27], GLEAN [40], and HDF5/DSM [5] use a set of 
additional staging nodes to buffer and process simulation 
output data. Placing analytics on staging nodes requires 
provisioning additional resources, and moving massive 
simulation output data to staging area can be costly and 
negatively interfere with simulation.  

4) Active Storage. Certain computational routines may be 
deployed directly on storage nodes and triggered to operate 
when data is written and/or read [33]. Due to resource 
limitations on storage nodes, the deployed analytics are 
usually restricted kernel functions. Further, access to storage 
nodes is not generally allowed in production environments. 

5) Offline Processing. Data written to storage is read 
back for additional or long-term analysis or visualization 
[16], typically assisted by workflow tools [9][25].  

6) Hybrid Online Processing. Systems like PreDatA [53] 
and DataSpaces [4] provide programming models that allow 
analytics to be broken down into separate pieces and 
deployed onto both compute nodes and staging nodes.  

Most existing systems support certain, fixed placement 
choices (Categories 1-5) and therefore, each is efficient or 
applicable to certain classes of analytics. Some permit 
analytics to run at different locations (Category 6), but 
require adopting particular coding patterns or re-placement 
involves substantial re-coding. Further, they do not support 
seamlessly switching analytics between online and offline, 
nor do they allow dynamic changes in analytics placement. 
Typical causes of limited flexibility are (1) inability to 
handle the alternative data movements between simulation 
and analytics required by different placement options (i.e., 
supporting inter-node and intra-node data transfer and file 
I/O); (2) lack of uniform higher-level interfaces that hide 
data movement detail; (3) imposition of specific computation 
models for analytics; and (4) inability to achieve those 
requirements with high performance and scalability.  

B. Technical Contributions 
The FlexIO middleware described in this paper is 

designed to provide data movement between simulation and 
analytics with both high performance and location flexibility. 
It offers the following functionalities: 

1) Flexibility in where analytics codes are run -- on 
compute nodes, on staging nodes, and/or any combination 
thereof. This is realized through FlexIO’s high performance 
intra- and inter-node data movement transports which are 
implemented with shared memory queues and RDMA, 
respectively, and tuned for high throughput, contention-
avoidance, and memory efficiency.  

2) Analytics placements can be altered without requiring 
application codes to be changed. FlexIO’s high level 
programming interface makes changes in placement 
transparent to simulation and analytics codes. Users can even 
seamlessly switch analytics to run offline when there are 
insufficient online resources for their timely execution.  

3) Runtime performance monitoring collects information 
about computation and data movement that is useful to 
scientists and automated runtime management systems for 
performance understanding and placement decisions. 

4) Mobile codelets, termed “Data Conditioning (DC) 
Plug-ins”, can be dynamically deployed and migrated along 
the I/O path, to perform useful on-the-fly data manipulation 
such as data selection, sampling and transformation.  

5) FlexIO enables various placement policies to exploit 
the location flexibility for tuning application performance, 
CPU usage, and data movement cost. Based on FlexIO, we 
implement a holistic placement policy which reduces both 
inter and intra program data movement costs. We also devise 
a node topology aware policy which takes into account the 
impact of cache topology on analytics placement.  

FlexIO operates on both Infiniband and the new Cray 
XK6 with Gemini interconnect. It has been applied to two 
leadership scientific applications: GTS fusion simulation and 
S3D combustion simulation. Experiments show that 
leveraging the flexibility enabled by FlexIO to tune analytics 
placement can improve applications’ performance by up to 
30% compared to inline-only solutions and the benefit is 
more evident at larger scales..  

The remainder of the paper is organized as follows. 
Section II describes the design and implementation of the 
FlexIO middleware. Section III describes how to automate 
placement of analytics driven by performance and cost 
metrics. Section IV shows performance improvements for 
two large-scale scientific applications due to flexible 
analytics placement. Section V reviews related work and 
Section VI concludes the paper. 

II. FLEXIO DESIGN AND IMPLEMENTATION 

A. System Overview 
The FlexIO software stack is depicted in Figure 2. 

Simulation and analytics codes use the ADIOS [28] 
read/write API for data exchange. The FlexIO runtime 
handles buffer management, parallel data re-distribution, and 
performance monitoring. It also manages “Data Conditioning 
Plug-Ins” which are mobile codelets compiled, deployed, 
and executed at runtime for on-the-fly data manipulation. 
Runtime performance monitoring provides information for 
scheduling data movements and for dynamic DC Plug-in 
placement and can also be retained for offline performance 
tuning. At the lowest transport level, FlexIO uses efficient 
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RDMA and shared memory data movements for inter- and 
intra- node movements, respectively. The choice of low level 
transport is automatically configured according to the 
placement of online analytics. 

FlexIO leverages the ADIOS [28] parallel I/O library 
which provides meta-data rich read/write interfaces to 
simulation and analysis codes. ADIOS has a set of built-in 
I/O methods under its higher level API to support various file 
I/O methods (such as MPI-IO, HDF5, and NetCDF) as well 
as data staging methods [2] [4]. Switching between different 
methods can be configured through an external XML 
configuration file, without modification to application codes. 
ADIOS has been used by several leadership scientific codes 
and is integrated with popular analysis and visualization 
tools that include Matlab, ParaView, and VisIt.  

FlexIO inherits from ADIOS useful features like its high 
level API and file I/O methods (to enable offline placement), 
and its implementation benefits from our previous work on 
RDMA-based data movement and staging. New 
functionalities compared to such prior work include an 
ADIOS stream read interface, methods for parallel memory-
to-memory multi-dimensional array re-distribution, efficient 
data movement for Cray XK6 systems with the Gemini 
interconnect, cache efficient on-node data movement via 
shared memory, intelligent buffer management, enriched 
performance monitoring, and mobile DC Plug-ins. In total, 
FlexIO is a system that supports diverse analytics placements 
via efficient built-in methods for data movement between a 
simulation and analytics components. 

B. Hig Level Interface 
The high-level interface of FlexIO extends the existing 

ADIOS file read/write API with three goals: 1) 
expressiveness in supporting common I/O patterns for 
simulation and analytics codes; 2) backwards compatibility 
with the existing ADIOS file I/O interface; and 3) easily 
switched underlying transports.  

Conceptually, the FlexIO interface allows simulations to 
pass data to analytics via “files”, and to operate on these 
“files” in either file or stream modes. In both modes, the data 
model is compatible with the existing ADIOS data model, 
where the simulation output data is logically time-indexed, 
and each timestep of output data is a group of variables of 
scalar or array types. In the file mode, data is written to the 
file system and read back by analytics, using one of ADIOS’ 
file I/O methods. The file mode is for backwards 
compatibility with the existing ADIOS file I/O interface.  

The newly added stream mode is specifically intended 
for memory-to-memory data movement between simulation 
and online analytics. Here, the simulation creates a “file” 
with some unique name, and the analytics opens the named 
“file”, but internally, this establishes connections to 
simulation processes via the underlying transport. Simulation 
processes, then, periodically write data to the “file”, and the 
data is passed to analytics as return parameters of their read 
calls (again, the underlying transport handles actual data 
movement). When the simulation closes the “file”, the 
connections are closed by the transport and analytics 
components receive End-of-Stream as return values from 
their read calls. As a result, stream mode is compatible with 
file I/O in that it can be switched with file mode without 
code changes.  

For stream mode, there are two common I/O patterns for 
high end applications. The first is for process-group-oriented 
data exchanges: during each I/O timestep, the variables 
written from each simulation process are conceptually 
packed into a group, called “Process Group”, and the 
analytics specifies the process groups it wants to read by 
simulation processes’ MPI ranks. The other pattern is a 
global array data exchange, where some multi-dimensional 
array, distributed among several simulation processes, is 
passed to several analytics processes. As in other MxN data 
exchanges [3], however, analytics processes may specify an 
array distribution or layout different from that present on the 
simulation side. In response, FlexIO properly chunks, splits, 
transfers, and re-organizes the array data exchanged between 
simulation and analytics, as shown in Figure 3. 

The high-level API makes it easy to change underlying 
transports, without the need to change applications. A one-
line update to the configuration file is sufficient to switch 
between file I/O and online data movement transports, and 
intra- vs. inter-node transports are automatically configured 
according to the placements of communicating simulation 
and online analytics processes. To tune transports, transport-
specific parameters specified as hints in an XML 
configuration file are passed to the FlexIO runtime. We refer 
readers to [18] for details of the interface specification. 

C. Data Movement Protocols 
There is considerable complexity in presenting to end 

users a convenient API, yet also providing placement 
flexibility and high performance. Key to this complexity is 
that the FlexIO runtime must translate the high-level API 
calls into actual data movements between simulation and 
analytics processes using low-level RDMA or shared 
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FlexIO API
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Shared Memory
(SysV, mmap, Xpmem)

RDMA
(InfiniBand, SeaStar/Portals, Gemini) 

EVPath Messaging Library
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Monitoring
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Figure 2.   FlexIO Software Stack 
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Figure 3.   Global Array Re-distribution. A 2D array is distributed 
among 9 simulation processes and passed to 2 analytics processes. 
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memory transports. As shown in Figure 3, the MxN 
mapping, i.e., which simulation process should send which 
piece of its data to which analytics processes, is determined 
by the overlapping portion(s) of data specified in the 
simulation’s write and analytics’ read calls, respectively. 
Establishing the necessary connections and transferring data 
efficiently at large scales is a non-trivial task. Below we 
describe the connection management and data transfer 
protocols used by the FlexIO runtime. 

1) Connection Management 
Before actual data movement, simulation and analytics 

programs connect to each other via assistance from an 
external directory server. To avoid overloading this server, 
simulation and analytics processes, respectively, elect a local 
coordinator. When creating a file in stream mode, the 
coordinator of the simulation registers with the directory 
server a file name associated with its own contact 
information. When the analytics opens that file, its 
coordinator looks up the server with the file name, retrieves 
the contact information of the simulation’s coordinator, and 
makes a connection with it. The directory server is involved 
only in discovery and connection setup and is not in the 
critical path of actual data movements.  

2) Data Movement  
To move global array data between two parallel 

programs, array data must be transferred according to the 
data distributions at both sides. The FlexIO write and read 
API captures the array distribution among simulation and 
analytics processes, respectively. Based on this information, 
the FlexIO runtime generates the re-distribution mapping. At 
each side, coordinators first gather array distributions for all 
processes (Steps 1.s and 1.a, respectively), exchange the 
distribution information with each other (Step 2), and then 
broadcast the peer-side distribution to all processes (Step 3). 
At this point, each process knows the array distribution of all 
other peer processes, so that it can calculate the mapping 
independently. Each sender process packs strides for each 
receiver process with overlapping array index range, and 
sends the packed strides to each receiver process (Step 4.s). 
Each receiver prepares a receive buffer based on the 
mapping and copies received strides into the appropriate 
target buffer (Step 4.a). The Process-Group-oriented data 
movement pattern is implemented in a similar fashion. 

There are several optional optimizations. First, write side 
calls can be either synchronous or asynchronous. The 
asynchronous API helps overlap data movement with other 
activities like the simulation’s computation.  

The second optimization is batching. The default 
granularity of data movement is per-variable. Users can 
instruct FlexIO to pack multiple variables and transfer them 
in a batch. This will cause both handshaking and data 
messages to be aggregated. 

The third optimization is caching to reduce the cost of 
handshaking. By default, the complete handshaking protocol 
(Step 1 to 4 as described above) is performed for each 
variable at each I/O timestep. If distribution information and 
buffer addresses are unchanged across timesteps, then some 
or all of the handshaking steps can be avoided by reusing 
existing information from previous timesteps. The sender or 

receiver can inform the FlexIO runtime about three possible 
caching options:  

i) NO_CACHING: perform the full handshaking 
protocol;  

ii) CACHING_LOCAL: re-use local side distribution 
information (skip Steps 1), but still exchange distribution 
information with peer side (perform Step 2 to 4);  

iii) CACHING_ALL: re-use both local and peer sides’ 
distribution data, so that handshaking is completely avoided. 

FlexIO uses the EVPath messaging library [12] to 
implement its data movement protocols. EVPath provides 
point-to-point messaging and data marshaling capabilities. 
Its modular architecture supports multiple messaging 
transports, and we have added to it the shared memory 
transport and the RDMA transport required by FlexIO. 

D. Shared Memory Transport 
The shared memory transport is for intra-node data 

movement. Using it, small messages like handshaking 
messages are passed through data queues in shared memory 
segments. Each data queue is a single-producer, single-
consumer, circular, lock-free FIFO queue inspired by 
Fastforward [17]. The producer and consumer have separate 
pointers to the next entry to enqueue or dequeue, and these 
pointers are guaranteed to be placed into different cache lines 
to reduce cache coherency traffic. Each entry in queue has a 
payload field of fixed-size and a status flag with two possible 
states: full or empty. Entries in data queues are carefully 
aligned and padded to make sure they do not share cache 
lines, so as to reduce false sharing. During data movement, 
the consumer polls the flag of the next entry to dequeue. The 
producer first checks that the next entry to enqueue is 
marked as “empty” before copying data into it. The flag is 
then set to “full”; this signals the consumer, which then 
copies data from the entry into the target receive buffer and 
sets flag to “empty” to release the entry to the producer. On 
systems with weak memory consistency, additional memory 
fences are inserted. 

For large messages such as actual simulation output data, 
a shared memory buffer pool is used. The producer pre-
allocates a shared memory buffer pool indexed with a free 
list. When sending a large message, the producer tries to find 
a buffer of the closest size in the pool (and allocates one if 
not found), copies the message into it, sends a control 
message to the data queue, and returns if it is an 
asynchronous movement. The consumer extracts the address 
and length from the control message, copies data from the 
shared memory buffer into target buffer, and returns the 
buffer to the producer’s free list. Thus two memory copies 
are needed for sending large messages asynchronously.  

On the Cray XK platform, our shared memory transport 
leverages page mapping support from the XPMEM kernel 
module [48] to reduce memory copy overheads. During 
synchronous large message transfers, the producer makes its 
source buffer available for sharing by calling 
xpmem_make(), and sends the shared memory segment id 
through the data queue. The consumer then gets the memory 
handle, maps the producer’s send buffer into its address 
space, and copies data to the target receive buffer. 
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E. RDMA Transport 
The RDMA transport in EVPath is for inter-node data 

movement. It is built on top of Sandia National Laboratory’s 
NNTI library [27]. NNTI implements a uniform set of APIs 
(including Connect, Memory Register/Unregister, RDMA 
Put and Get) above ibverbs, Portals, and uGNI. It therefore, 
provides a portability layer among different interconnects 
(IB, SeaStar and Gemini). Based on NNTI, the EVPath 
RDMA transport implements buffer management and several 
optimizations for high performance RDMA data movement.  

Dynamic buffer allocation and memory registration can 
cause significant overheads in RDMA-based data movement. 
Figure 4 demonstrates this with a point-to-point RDMA Get 
bandwidth test on the Cray XK 6. This is particularly an 
issue for applications generating particle data, since the 
number of particles written by a simulation process may 
change across timesteps due to particle movement. One 
solution to reduce this cost is to use a persistent buffer and 
registration cache, as in MPI [34] and Charm++ [38]. We use 
a similar approach: allocated and registered send and receive 
buffers are temporarily kept in a buffer pool; later data 
transfers try to reuse those buffers whenever possible. A 
configurable threshold value controls total memory usage 
and triggers buffer reclamation, if necessary.  

For small messages, a pair of message queues is 
established between two interacting processes for two way 
messaging. The sender process uses NNTI’s RDMA Put to 
send a message into the receiver process’ message queue. 
For the Cray Gemini interconnect, this uses FMA Put to send 
the data. For large message transfers, we use receiver-
directed RDMA Get for data movement. The sender process 
first copies the message into a send buffer acquired from the 
buffer pool and sends to the receiver a small control message 
containing the address and size of the send buffer. The 
receiver prepares a receive buffer, and issues RDMA Get to 
fetch data according to some scheduling policy. For Gemini, 
RDMA Get is implemented with uGNI’s BTE RDMA 
operation. The scheduling technique is leveraged from our 
previous work in data staging [2]; and its use can effectively 
reduce network contention. 

F. Data Conditioning Plug-ins 
Data Conditioning Plug-ins are mobile codes embedded 

in the FlexIO transport. They are triggered to perform 
operations on data during the exchange of data between 
simulation and analytics. DC Plug-ins can be executed 
within the address space of either the simulation or analytics, 
and they can be migrated across address spaces at runtime.  

DC Plug-ins are stateless codelets created on the reader 
side (e.g., analytics) to customize writer-side outputs on the 
fly. Useful examples of DC Plug-ins include data markup, 
annotation, sampling, bounding box, unit conversion, etc. 
They are typically lightweight in terms of compute and 
memory usage, and are easily programmed with the C subset 
offered by the C-on-Demand (CoD) [11].  

DC Plug-ins are specified as parameters to FlexIO read 
API calls. Their code strings are compiled and installed in 
the appropriate process’ address space through the dynamic 
binary code generation offered by CoD. The code can be 

executed at either the analytics side or simulation side. 
Runtime deployment of DC Plug-ins from the analytics side 
into simulation processes is through a communication 
channel separate from the ones used for data movement. DC 
Plug-in placement is informed from the caller. Compared to 
our previous work [2], DC Plug-in has better scalability and 
is fully integrated with the FlexIO infrastructure; we have 
also implemented various runtime data manipulation 
functionality and management policies with DC Plug-ins to 
further enhance the I/O path (more  details in Section IV). 

G. Performance Monitoring 
FlexIO monitors the performance of simulation, 

analytics, and DC Plug-ins. There are measurement points at 
all levels of the FlexIO software stack to gather a variety of 
information, including the timing of data movement and DC 
Plug-in execution, as well as transferred data volumes. 
Dynamic memory allocation points within FlexIO are also 
instrumented to record memory usage during data 
movement. Optionally, information about the computation 
and communication behavior of simulation and analytics can 
also be obtained by explicitly instrumenting the codes.   

Performance information is used in two ways. For offline 
performance tuning, monitoring information can be dumped 
to trace files, and the developer can use it to understand and 
tune analytics codes. For runtime management, monitoring 
data captured from the simulation side can be gathered 
online and transferred to the analytics side. The analytics 
process(es) can then use it to dynamically schedule data 
movement and decide the placement of DC Plug-ins.  

H. Implementation Status 
FlexIO has been implemented and operates on Cray XT5, 

XK6,and InfiniBand clusters. Earlier, we applied FlexIO to 
an online analysis and visualization pipeline for the Pixie3D 
application on the Cray XT5 [54]. We have also used it to 
implement analytics for two other applications -- GTS and 
S3D (details in Section IV). Regarding resiliency, the current 
version uses simple timeout-and-retry schemes to cope with 
errors and failures during data movement, but we are 
planning to incorporate our recent work on a distributed 
transaction protocol [26] into future version of FlexIO. 
Features of FlexIO are publically available in the latest 
release of the ADIOS [18] software. 
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III. EXPLOITING PLACEMENT FLEXIBILITY 
FlexIO makes it possible to tune analytics placement to 

improve performance and/or reduce cost: it provides 
performance information that can aid in placement decision, 
and it can automatically configure the underlying transport to 
enforce any placement decision made by users. To illustrate 
the importance of this, this section describes three placement 
algorithms realizing different placement policies. Our 
purpose is not to show ‘best’ policies, but instead, to show 
how FlexIO makes it easy to implement alternative methods 
suitable for different usage scenarios. This is important 
because there may be frequent changes to analytics codes 
and to the configurations of I/O pipelines, to support 
evolving scientific processes. The heuristic algorithms 
shown find satisfactory placements for large scale simulation 
and analytics within reasonable time frames. They assume 
that simulation and analytics exhibit steady runtime behavior 
so that placements can be statically determined and enforced 
at job launch time. Such assumption holds for most of the 
practical use cases we have encountered.   

Placement algorithms: 1) optimize some objective (e.g., 
minimizing total execution time); 2) use a resource allocation 
policy that determines how much resource to allocate to 
simulation and analytics components; and 3) carry out a 
resource binding policy that decides the process/thread to 
physical resource mapping.  

A. Performance and Cost Objectives 
The following performance and cost metrics (initially 

defined in [52]) are of interest to science end users. 
Total Execution Time: the time from the start of 

simulation and analytics to the completion of both.  
Total CPU Hours: the total nodes used multiplied by the 

total execution time (in units of hours). This metric measures 
the cost of a run, as supercomputing centers commonly 
charge users with the CPU hours consumed by their jobs. 

Data Movement Volume: the amount of data moved 
between simulation and analytics. 

B. Placement Algorithms 
1) Data Aware Mapping. The data aware mapping 

algorithm introduced in [51] takes as input a communication 
matrix recording the data movement volume between 
simulation processes and analytics processes. It applies graph 
partitioning to divide simulation and analytics processes into 
as many groups as the number of nodes, and then assigns 
each process group to a node with each process mapped to 
one core. Data aware mapping is essentially a resource 
binding algorithm, and it tends to place frequently 
communicating processes from different programs onto the 
same node.  

2) Holistic Placement. We extend data aware placement 
to holistically treat two additional issues: i) to carry out 
resource allocation, in addition to simply deciding resource 
bindings, and ii) to also consider the data movements within 
parallel simulation and analytics programs (e.g., their MPI 
communications). Termed ‘holistic placement’, we have 
experimented with two algorithm variants, for synchronous 
vs. asynchronous data movement scenarios, respectively. 

These algorithms take as input the input configuration of the 
simulation and the strong scaling function of analytics. 
Performance profiling is used to obtain such information.  

When data movement between simulation and analytics 
is synchronous, holistic placement works as follows. During 
resource allocation, the analytics are scaled to match the data 
generation rate of the simulation. The idea is that simulation 
and analytics form a two-stage pipeline and hence, matching 
the analytics’ data consumption rate with simulation’s data 
generation rate leads to minimal pipeline stalls. The output of 
the resource allocation step is the number of processes 
needed to run analytics.  

During resource binding, the algorithm constructs a 
communication matrix that records both inter- and intra-
program data movement. It models the target parallel 
machine as a two-level tree in which cores of the same node 
are siblings and have less communication cost with each 
other than with cores on different nodes. It then uses the 
graph mapping algorithm provided by the SCOTCH library 
[36] to map the communication graph to the architecture 
graph. Compared to data aware mapping, holistic placement 
1) captures the trade-off between inter- and intra- program 
communication, and 2) can be easily extended to model the 
machine architecture in greater detail (as will be shown in 
the third algorithm). 

When data is moved asynchronously between simulation 
and analytics, the algorithm additionally considers the 
asynchrony effect of data movement. Asynchronous data 
movement overlaps with other activities such as the 
simulation’s computation. Accordingly, unlike the 
synchronous case, the resource allocation step must ensure 
that the sum of data movement time and analytics 
computation time is no larger than the simulation’s I/O 
interval. Data movement time is estimated as total data size 
divided by point-to-point RDMA transport bandwidth. This 
estimation is conservative because it assumes data are moved 
to analytics sequentially (from one simulation process at a 
time) through the interconnect instead of shared memory, 
and it may lead to resource over-provisioning for analytics. 
However, given that analytics usually runs at a much smaller 
scale than the simulation, such over-provisioning is unlikely 
to cost significant additional resources and may even be 
beneficial to accommodate variations in analytics running 
times. The resource binding step for asynchronous case is the 
same as for synchronous case described above. 

3) Node Topology Awareness: To demonstrate the ease 
with which placement policies can be changed in FlexIO, we 
explore one additional generalization of the holistic mapping 
algorithm, designed to take into account the complicated 
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cache topologies and deep memory hierarchies of modern 
multi-core processors. Figure 5 shows the memory structure 
of a machine with four quad-core AMD Barcelona 
processors and four NUMA domains. Cores share different 
levels of cache and memory resources, which results in non-
uniform on-node communication times between cores.  

Node topology aware placement, then, further extends 
holistic placement by modeling the target machine as a 
multi-level hierarchy: cores within the same node are placed 
at different levels of the tree according to the cache topology. 
The graph mapping algorithm (used in holistic placement as 
described above) is then applied to map the communication 
graph onto the hierarchical architecture tree and generate 
process-to-core binding.  

For NUMA machines, the algorithm not only decides 
process-to-core binding, but also determines the placement 
of FlexIO’s internal buffers in memory. Our default policy is 
that the shared memory data queues and buffer pools are 
placed into simulation processes’ local NUMA domain no 
matter where communicating analytics processes are located. 
This arrangement facilitates the simulation’s access to those 
data structures but may penalize analytics’ access. The idea 
is that in most cases, the simulation is the performance-
bounding part in the producer-consumer pipeline, while the 
analytics are more tolerant of slower data movement.  

IV. PERFORMANCE EVALUATION 
In this section, we present experimental results obtained 

from tuning placements of analytics for two large-scale 
applications: GTS and S3D. We also demonstrate the utility 
of Data Conditioning Plug-ins to enable dynamic placement 
of analytics at runtime.  

Experiments are run on Oak Ridge National Laboratory’s 
Titan Cray XK6 and Smoky cluster. Titan is upgraded from 
the Jaguar Cray XT5 and equipped with 18,688 compute 
nodes, 960 of which contain GPUs. Each compute node has 
a 16-core 2.2GHz AMD Opteron 6274 (Interlagos) processor 
and 32GB of RAM. Titan uses the Gemini interconnect. 
Smoky is an 80 node cluster. Each compute node has four 
quad-core 2.0GHz AMD Opteron processors (as shown in 
Figure 5) and 32 GB of memory. The Smoky cluster uses 
DDR InfiniBand interconnect. Both Titan and Smoky have 
access to the center-wide Lustre file system. 

A. GTS Performance 
GTS (Gyrokinetic Tokamak Simulation) is a global 

three-dimensional Particle-In-Cell (PIC) code used to study 
the microturbulence and associated transport in magnetically 
confined fusion plasma of tokamak torodial devices [47]. 
GTS simulation outputs particle data containing two 2-
dimensional particle arrays for zions and electrons, 
respectively. The two arrays contain seven attributes for each 
particle, including coordinates, velocity, weight and particle 
ID. The particle data is processed by a series of analysis 
steps, including the calculation of particle distribution 
function and a range query on the velocity attributes of all 
particles. The query result is ~20% of the original output 
particles. 1D and 2D histograms are generated from the 
query results and written to files which can then be used for 

parallel coordinates visualization. The analytics code uses 
FlexIO’s stream mode to read particles data and follows the 
process-group-oriented I/O pattern. 

We run GTS with a typical production run configuration, 
which results in particle data output size of 110MB per 
process. GTS is run in OpenMP/MPI hybrid mode, as 
suggested by the GTS team. It outputs particle data every 
two simulation cycles, as desired by scientists.   

1) Tuning Placement of Analytics 
We use the approaches described in Section III to place 

analytics for GTS. For resource allocation, we apply the 
holistic placement policy to decide the number of processes 
to run analytics so that the data consumption rate matches 
GTS simulation’s I/O frequency. After completing resource 
allocation, all three placement algorithms leverage inter-
process communication volumes to determine process to 
core binding. Furthermore, since GTS itself can be strong-
scaled for a fixed input problem size by varying number of 
OpenMP threads per MPI process, we decide the placement 
for each of GTS configurations with different number of 
OpenMP threads. We compare the resulting performance and 
cost of different configurations and placements. 

Figure 6 (a) shows the Total Execution Time of the 
coupled GTS simulation and analytics with different 
placements at various scales on Smoky (weak scaling is 
applied). At all scales, all three algorithms decide to place 
analytics on Helper Cores in compute nodes (there are still 
differences among them, as will be explained later). The 
particular helper core placement found by node topology 
aware algorithm consistently shows the best performance: 
GTS is configured to run with 3 OpenMP threads per MPI 
process, and every 4 MPI processes are placed on each 
compute node; 4 analytics processes are placed on the 
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remaining 4 cores of each node (i.e., the Helper Cores); GTS 
processes pass data to analytics processes through shared 
memory transport whose internal buffers are pinned in local 
NUMA domains. Besides, the GTS processes are placed 
onto nodes so that their 2D grid communication pattern is 
aligned with the target machine modeled as a 3-level tree.  

In comparison, the holistic placement algorithm maps 
GTS and analytics processes onto nodes in the same way as 
node topology aware placement. However, since it ignores 
the NUMA structure of each node, it maps GTS threads and 
analytics processes linearly to cores within each node. 
OpenMP threads of some GTS processes are placed across 
NUMA boundaries, which hurts performance by up to 7.0% 
on Smoky. The placement found by data aware mapping 
algorithm has comparable performance as holistic placement. 
Largely this is because GTS performance is in-sensitive to 
process placement and hence ignoring its internal 
communication in placement decision does not cause notable 
performance penalty. However, data aware mapping is still 
outperformed by node topology aware placement by up to 
9.5% due to its ignorance of NUMA structure. 

We also place analytics inline and on a set of separate 
staging nodes. With inline placement (Case 2 in Figure 7), 
the GTS processes directly call analytics routine. On Smoky 
whose compute nodes has 16 cores each, we run GTS with 4 
OpenMP threads per MPI process and place 4 MPI processes 
on each compute node. In comparison, the helper core 
placement takes 1 core from GTS and offloads analytics onto 
that core (Case 1 in Figure 7). Such offloading is beneficial 
for two reasons. On one hand, GTS running with 4 OpenMP 
threads cannot make full use of all cores within a compute 
node due to the fact that there are code regions in GTS where 
only main thread is active. Taking 1 core out of 4 from a 
GTS process only slows down GTS by 2.7% (as indicated by 
the increase of simulation “cycle1” and “cycle2” time from 
Case2 to Case 1). On the other hand, the inline analytics 
weighs 23.6% of GTS runtime, so offloading analytics to 
helper core reduces Total Execution Time. 

When placing analytics onto separate staging nodes, data 
are moved to staging nodes through RDMA transport. 
Compared to the helper core placement, the pitfalls of 
placing analytics in staging nodes are: 1) huge amounts of 
particle data are moved through interconnect which 
consumes more power than on-node movement; 2) 
asynchronous bulk data movement can interfere with 
simulation’s MPI communication. We have to carefully set 
the asynchronous data movement scheduling policy to keep 
the GTS slowdown under 15%. 

In terms of CPU hours cost, Inline placement is the worst 
due to penalty of running non-scalable analytics at large 
scales. Helper core placement use the same core counts as 
Inline placement but consumes less CPU hours by finishing 
faster. Staging placement is worse than helper core 
placement since it allocates additional nodes but does not 
achieve better total execution time. 

In terms of data movement volume, both inline and 
helper core placement avoid moving particle data between 
simulation and analytics through interconnect, while staging 
placement causes all particle data moved through 

interconnect. On the other hand, since staging placement 
maps analytics processes closer to each other than the other 
two placements, staging placement helps reduce the amount 
of analytics’ internal MPI communication which go through 
interconnect. Overall, since inter-program data movement is 
dominant and analytics runs local query to reduce data, 
helper core and inline placement reduces inter-node data 
movement by about 90% over staging placement. 

Figure 6 (b) shows placement tuning results on Titan. 
Similar to Smoky results, on Titan which has 2 NUMA 
domains and 8 cores in each, running GTS with 7 OpenMP 
threads per MPI process and analytics on a separate helper 
core within the NUMA domain results in the best 
performance and cost. 

2) A Closer Look at Helper Core Placement 
Figure 7 (Case 1) shows that GTS and analytics 

experience nearly invisible I/O overhead thanks to the shared 
memory transport. It also shows that analytics processes are 
idle for 67% of time, indicating over-provisioning for 
analytics due to our conservative resource allocation policy.  

The downside of placing simulation and analytics on the 
same node is interference between them due to contention on 
shared on-node resources. To assess such interference, we 
test two cases: i) GTS with 3 OpenMP threads runs in solo 
and does no I/O or analytics (Case 3 in Figure 7) vs. ii) GTS 
with 3 OpenMP threads runs with analytics placed on helper 
cores (Case 1 in Figure 7). Figure 8 shows the aggregated L3 
cache miss rate (measured in L3 cache misses per 1K 
instructions) seen by all GTS threads in simulation main loop 
in two cases (hardware performance counters are recorded 
with PAPI [31]). GTS experiences 47% more L3 cache 
misses when analytics runs on helper core and share L3 
cache with it, and its simulation time (“cycle1” and “cycle2” 
in Figure 7) increases by 4.1%. Achieving better 
performance isolation between simulation and analysis when 
they are placed on the same node is part of our future work. 

3) How Close is Our Solution to the Optimal? 
The runtime of GTS which runs solo with 4 OpenMP 

threads and does not perform I/O or analytics can be 
considered as the Total Execution Time when data 
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movement and analytics are “free” (no resource usage) and 
infinitely fast. This value is therefore less or equal to the 
optimal Total Execution Time of coupled simulation and 
analytics. The best placement solution which we have found 
is at most 7.9% larger than this lower bound (dashed lines in 
Figure 6) with the same core count used at all scales on 
Titan, and at most 8.4% on Smoky. 

B. S3D Performance 
S3D is a state-of-the-art flow solver for performing direct 

numerical simulation (DNS) of turbulent combustion [20]. 
We use a modified version of S3D code called S3D_Box 
created by the S3D team for our test. S3D_Box performs a 
portion of the full S3D simulation. During its execution, 
S3D_Box periodically outputs species data which are 22 3-
dimensional double-typed arrays. The species data is fed into 
a parallel volume rendering code [49] to visualize images for 
each every species. The visualization code reads data by 
specifying global array index ranges and FlexIO handles 
MxN data re-distribution underneath. We set the input 
parameters so that during each I/O action, the total size of 22 
arrays generated by each simulation process is 1.7MB, which 
is the same as typical production S3D runs. The simulation 
writes species data out every ten simulation cycles. 

1) Tuning Data Movement  
Data movement between simulation and visualization 

exercises FlexIO’s Global-Array-oriented I/O pattern. Since 
arrays’ distribution and memory addresses do not change 
over time at neither simulation nor visualization side, we set 
the caching option to CACHE_ALL to avoid several 
gather/scatter and handshaking messages during data 
movement (as described in Section II.C). We also enable 
batching so that all 22 arrays are packed and sent together in 
a batch. Besides, simulation’s write calls are set to be 
asynchronous. Those tuning efforts significantly reduce the 
simulation-visible data movement time on both Titan (from 
1.2 to 0.053seconds when S3D_Box runs on 1K cores with 
RDMA transport) and Smoky (from 4.0 to 0.077seconds 
when S3D_Box runs on 1K cores with RDMA transport). 
And due to the small output data size, asynchronous data 
movement does not cause visible impact on simulation’s 
internal communication. The tuning is enforced through 
setting hints in external XML configuration file and requires 
no changes to simulation or visualization source code.  

2) Tuning Placement of Analytics 
We apply the three heuristic algorithms to decide 

placement of the visualization for S3D_Box. The resource 
allocation step determines a 128:1 ratio between simulation 
and analytics processes. For S3D case, the intra-program 
MPI communication volume is dominant over inter-program 
data movement due to relative small output data size and low 
I/O frequency. Under this situation, both holistic placement 
and node topology aware placement deploy visualization 
processes onto separate nodes (i.e., Staging Nodes) and use 
RDMA transport to move data between simulation and 
visualization processes. They also place S3D_Box in a 3D 
block decomposed fashion to respect S3D_Box’s logical 3D 
process layout. Node topology aware placement achieves 
slightly better performance than holistic placement by further 

aligning processes’ communication with compute node’s 
NUMA structure (as shown in Figure 9).  

The Data Aware Mapping algorithm places each 
analytics process close to those simulation processes which 
intensively communicate with it. This ends up placing 
visualization processes in a hybrid manner: a visualization 
process receives data from simulation processes both on 
local node and on remote nodes. Since the inter-program 
data movement volume is much less than internal MPI 
communication, putting simulation and visualization close to 
each other does not pay off sufficiently, but meanwhile such 
hybrid placement increases the amounts of S3D_Box’s MPI 
communication that goes across interconnect and increase 
Total Execution Time compared to the staging placement.  

We measure the performance with inline placements. 
Staging placement is better than inline because asynchronous 
data movement and running simulation and visualization 
computation (and writing rendered image to files in PPM 
format) as a two-stage pipeline can effectively hide the cost 
of I/O and analytics computation. Due to insufficient 
scalability of file I/O, the advantage of staging placement 
over inline increase at larger scales. Staging placement also 
consumes less CPU hours than Inline, since it use 0.78% 
additional resources but improves Total Execution Time by 
up to 19% and 30% on Smoky and Titan, respectively. 

3) How Close is Our Solution to the Optimal? 
The runtime of S3D_Box when it runs solo and does not 

perform I/O or analysis gives the lower bound of the optimal 
Total Execution Time (dashed lines in Figure 9). With less 
than 1% extra resources, the staging placement is at most 
3.6% larger than the lower bound on Titan, and 5.1% on 
Smoky. 
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In summary, for S3D, placing visualization on a set of 
staging nodes and aligning both inter- and intra-program data 
movement with underlying architecture gives the best 
performance and cost, and the savings of tuning placement is 
more evident at larger scales.  

C. Utility of Data Conditioning Plug-ins 
FlexIO’s Data Conditioning Plug-in enables dynamic and 

flexible computation placement along I/O path. Applications 
can leverage this feature to implement effective runtime 
policies to customize simulation output data on-the-fly, or 
adapt to dynamic variations in workloads or environment. 
We demonstrate the utility of DC Plug-ins with examples. 

1) Dynamic Data Selection 
A common practice for scientists to monitor simulation 

status is to let simulation periodically output a set of 
variables and run validation codes on those data. We 
implement an instance of DC Plug-in for GTS simulation 
with which validation code can specify the particle 
attribute(s) it wants to check, and this DC Plug-in can be 
dynamically deployed and run at either simulation or local 
analytics side. We use three data selection instances which 
select 1, 3, and 7 attributes from all 7 attributes of particles, 
respectively. On Smoky, we run GTS on 256 cores and the 
validation analytics on separate 32 cores. Figure 10 shows 
the measured simulation runtime and data movement volume 
between simulation and analytics when data selection plug-in 
is deployed at simulation side, and compares the results 
when all the original particle data are moved to validation 
analytics (“No Plug-in”). Deploying data selection plug-in 
with large data reduction ratio onto data source (simulation) 
can effectively reduce data movement, and cause negligible 
overhead to simulation blocking I/O time. In fact, reducing 
data movement volume also improves simulation runtime 
due to reduced contention on interconnect. 

2) Load Shedding  
If the analytics consumes data slower than simulation 

generates data, it will blocks simulation and may cause huge 
waste of CPU cycles at large scale. Under this situation, DC 
Plug-ins can be used to either shift workload from analytics 
to simulation or reduce data being moved downstream so 
that load on analytics side is alleviated. To demonstrate this, 
we implement a data staging service for GTS which 
asynchronously moves output data from simulation and 
dumps data to files. We emulate a situation where the file 
system is experiencing severe congestion so writing to file is 
very slow (which does happen in practice) and causes back-
pressure to simulation. To cope with this situation, the 
staging server instantiates a sampling DC Plug-in at 
simulation side which samples one out of every 100 particles 
of the original simulation output data. A simple policy is 
used to trigger load shedding: sampling plug-in is installed to 
simulation side if monitored simulation’s running-average 
blocking I/O time exceeds a pre-defined threshold value. The 
dynamic code generation requires only 0.5msecs, so code 
deployment has an insignificant impact on the running 
system. The resulting sampling code requires only 220 x86 
instructions. Figure 11 compares the steady state time before 
vs. after DC Plug-in is deployed. The sampling Plug-in helps 

reduce data fetch time and staging server’s file writing time 
and releases GTS simulation from blocking.  

To summarize, experiments show that FlexIO can 
support a variety of simulation and analytics workloads at 
large scales through flexible placement options, efficient data 
movement, and dynamic deployment of useful data 
manipulation functionalities. 

V. RELATED WORK 
Online data analytics and visualization has gained much 

recent attention from the HPC community. Current work 
falls into two categories: (1) new data analytics and 
visualization algorithms, including in situ indexing [45], 
compression [23], feature extraction [4], and various 
visualization techniques [41][49], and (2) supporting tools 
and infrastructures like those mentioned in Introduction.  

Computation placement is an extensively studied topic in 
distributed systems due to its significant impact on 
application performance and cost. Particularly relevant is 
previous work on computation placement within the Active 
Storage context. Abacus [1] uses an online performance 
model to guide the dynamic placement of application and file 
system functions among clients and servers to adapt to a 
variety of application and system runtime characteristics, but 
it assumes a progressive, per-record computation model. [46] 
studies load distribution of a class of streaming computation 
in an active storage system. Diamond [19] aggressively 
places filters to data sources to reduce search operation costs. 

The importance of placement has also been exploited in 
other distributed computing models. Streaming operator 
placement on wide-area overlay network has been studied in 
[31]. COLA [21] applies graph partitioning to place a 
streaming processing dataflow onto a cluster of nodes with 
load balance and throughput as the major optimization 
objectives. Armada [30] uses similar graph partitioning 
techniques to distribute in-network operations within a Data 
Grid to improve I/O performance. Although the 
environments targeted by those work are different from the 
HEC platforms targeted by FlexIO, most placement 
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algorithms can be supported by FlexIO thanks to its diverse 
placement options and performance monitoring information. 

There have emerged many data intensive computing 
platforms such as IBM’s System S streaming system [15], 
SciDB [37], and Hadoop/MapReduce-related systems (e.g., 
SciHadoop [6], Himach [40], and SciMATE [44]). Those are 
self-contained frameworks with specific programming 
models and built-in runtime to manage computation 
distribution. FlexIO as an I/O middleware is beneficial to 
those frameworks in that they may leverage FlexIO to couple 
with simulation for online data processing and enjoy the 
location-flexibility brought by FlexIO. 

Scientific workflow systems like Pegasus [9] and Kepler 
[25] are often used to orchestrate the execution of analysis 
tasks. They mainly use files as the data exchange 
mechanism. The explosive growth of scientific data, 
however, can easily stress the I/O system and overwhelm 
overall workflow performance. Therefore, it is expected that 
more and more analysis will be deployed online and run in 
situ with simulation, especially those which can achieve 
early data reduction or prepare data for better use by 
downstream analyses. FlexIO can be readily integrated with 
scientific workflow systems to enable such online usage. 

At the implementation level, our shared memory 
transport borrows cache optimizations from FastForward’s 
lock-free queue [17]. There is also similar work on high 
performance MPI intra-node communication [7][8]. Besides, 
although MPI may be used to achieve similar flexibility as 
FlexIO, MPI does not support seamless switch to file I/O, 
and the code coupling tools built on top of it are shown to 
have efficiency issues for large data exchange [50].  

VI. CONCLUSIONS AND FUTURE WORK 
The FlexIO middleware is designed to flexibly couple 

data analytics with simulation on high end machines. 
Evaluation results obtained with two large scale scientific 
applications GTS and S3D verify the argument for flexible 
placement and demonstrates FlexIO’s ability to support 
common I/O patterns and diverse placement options. In 
addition, various placement policies can be implemented 
with FlexIO to effectively tune application performance and 
cost. Finally, Data Conditioning Plug-ins enable dynamic 
deployment of computation along I/O path based on which 
useful runtime functionalities can be implemented.  

Our future work includes: 1) enhancing FlexIO to 
support dynamic resource allocation and placement policies, 
to deal with cases where analytics and/or simulations vary 
their runtime behaviors (e.g., Adaptive Mesh Refinement 
codes); 2) providing better performance isolation between 
simulation and analytics for helper core placement scenario; 
3) enhancing FlexIO for various failure situations. 
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