
FlexIO: I/O Middleware for Location-Flexible Scientific Data Analytics

Fang Zheng, Hongbo Zou, Greg Eisenhauer, Karsten Schwan, Matthew Wolf, Jai Dayal,
Tuan-Anh Nguyen, Jianting Cao, Hasan Abbasi*, Scott Klasky*, Norbert Podhorszki*, Hongfeng Yu†

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
*Oak Ridge National Laboratory, Oak Ridge, TN, USA

†Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract—Increasingly severe I/O bottlenecks on High-End
Computing machines are prompting scientists to process
simulation output data online while simulations are running
and before storing data on disk. There are several options to
place data analytics along the I/O path: on compute nodes, on
separate nodes dedicated to analytics, or after data is stored on
persistent storage. Since different placements have different
impact on performance and cost, there is a consequent need for
flexibility in the location of data analytics. The FlexIO
middleware described in this paper makes it easy for scientists
to obtain such flexibility, by offering simple abstractions and
diverse data movement methods to couple simulation with
analytics. Various placement policies can be built on top of
FlexIO to exploit the trade-offs in performing analytics at
different levels of the I/O hierarchy. Experimental results
demonstrate that FlexIO can support a variety of simulation
and analytics workloads at large scale through flexible
placement options, efficient data movement, and dynamic
deployment of data manipulation functionalities.

Keywords- I/O, In Situ Data Analytics, Placemen, Flexibility

I. INTRODUCTION
Peta-scale scientific simulations running on high end

computing machines in domains like Fusion [22],
Astrophysics [14], and Combustion [20] now routinely
generate terabytes of data in a single run, and these data
volumes are only expected to increase. Since this massive
data is key to scientific discovery, the ability to rapidly store,
move, analyze, and visualize data is critical for scientists’
productivity. Yet there are already serious I/O bottlenecks on
current HEC machines, and movement toward the Exascale
is further accelerating this trend.

Online data analytics has emerged as an effective way to
overcome the I/O bottleneck for scientific applications
running at the Peta-Scale and beyond. By processing data as
it moves through the I/O path, online analytics can extract
valuable insights from live simulation output in a timely
manner, better prepare data for subsequent deep analysis and
visualization, and gain improved performance and reduced
data movement cost (both in time and in power) compared to
solely file-based offline approaches. The utility of the
approach is evident from its wide adoption of leading
scientific applications like the S3D combustion simulation
[49], the GTC [22] and GTS [47] fusion simulations,
Trillions [27], CTH [29], and FLASH [42].

For real-time processing of the outputs generated by
large scale simulations, a key problem to address is “where”

analytics are placed along the I/O path: on compute nodes
integrated with application codes, on compute nodes as
separate software components, on nodes dedicated to
analytics (also termed ’staging nodes’), or offline (after data
is placed into persistent storage) (as illustrated in Figure 1).
Placing data analytics involves deciding the resources to
allocate to analytics computation and realizing the data
movements between simulation and analytics. Previous
experimental results and analytical models [52] show that
analytics placement can significantly impact the performance
(e.g., runtime) and cost (e.g., CPU hours) of the coupled
simulation and analytics and that the best placement depends
on the particular analytics codes, data volumes, scale of
operation, and machine characteristics. The consequent
insight is that no single, specific placement will be ‘best’ for
all applications and analytics.

Such variation has important implications to both
scientists and the software that supports analytics. Scientists
desire the performance benefit from good placement, but it is
a burden for them to tune placement every time a different
analytics code is run, especially when this requires
significant coding effort. There is a need, therefore, for
infrastructure that makes it easy to decide, enforce, change,
and tune analytics placement. At the same time, if such an
analytics software infrastructure aims to support a broad
range of simulations and analytics, lacking placement
flexibility limits its applicability, since fixed placements may
cause negative or even disastrous impact on application
performance at large scale. Flexible placement, therefore, is
a critical element of analytics infrastructure.

A. Placement Support in Existing Systems
A number of systems and tools have been developed to

support online analytics and visualization.

Parallel File
System

Simulation Core

Helper Core

Staging Core

Offline Core
Figure 1. Analytics Placement Options along I/O Path.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.46

320

1) Analytics and Visualization Libraries. ParaView’s co-
processing library [13], VisIt’s remote visualization [43], and
other online visualization work [41][49] offer software
libraries with collections of analytics and visualization
routines. Although those libraries do not impose restrictions
on where they can be executed and can be directly invoked
as function calls, the libraries must rely on external data
movement support to run in staging nodes or on dedicated
compute node cores, termed ‘helper’ cores in Figure 1.

2) Helper Core Processing. Functional partitioning [24],
software accelerator [35], and Damaris [10] perform file I/O
and analytics on dedicated cores in compute nodes and
leverage shared memory to pass data. Such placement can be
beneficial for some cases (e.g., when the simulation cannot
scale to use all cores), but its applicability is restricted by the
memory space on compute nodes made available by the
simulation.

3) Staging Area Processing. Data Services [2], Nessie
[27], GLEAN [40], and HDF5/DSM [5] use a set of
additional staging nodes to buffer and process simulation
output data. Placing analytics on staging nodes requires
provisioning additional resources, and moving massive
simulation output data to staging area can be costly and
negatively interfere with simulation.

4) Active Storage. Certain computational routines may be
deployed directly on storage nodes and triggered to operate
when data is written and/or read [33]. Due to resource
limitations on storage nodes, the deployed analytics are
usually restricted kernel functions. Further, access to storage
nodes is not generally allowed in production environments.

5) Offline Processing. Data written to storage is read
back for additional or long-term analysis or visualization
[16], typically assisted by workflow tools [9][25].

6) Hybrid Online Processing. Systems like PreDatA [53]
and DataSpaces [4] provide programming models that allow
analytics to be broken down into separate pieces and
deployed onto both compute nodes and staging nodes.

Most existing systems support certain, fixed placement
choices (Categories 1-5) and therefore, each is efficient or
applicable to certain classes of analytics. Some permit
analytics to run at different locations (Category 6), but
require adopting particular coding patterns or re-placement
involves substantial re-coding. Further, they do not support
seamlessly switching analytics between online and offline,
nor do they allow dynamic changes in analytics placement.
Typical causes of limited flexibility are (1) inability to
handle the alternative data movements between simulation
and analytics required by different placement options (i.e.,
supporting inter-node and intra-node data transfer and file
I/O); (2) lack of uniform higher-level interfaces that hide
data movement detail; (3) imposition of specific computation
models for analytics; and (4) inability to achieve those
requirements with high performance and scalability.

B. Technical Contributions
The FlexIO middleware described in this paper is

designed to provide data movement between simulation and
analytics with both high performance and location flexibility.
It offers the following functionalities:

1) Flexibility in where analytics codes are run -- on
compute nodes, on staging nodes, and/or any combination
thereof. This is realized through FlexIO’s high performance
intra- and inter-node data movement transports which are
implemented with shared memory queues and RDMA,
respectively, and tuned for high throughput, contention-
avoidance, and memory efficiency.

2) Analytics placements can be altered without requiring
application codes to be changed. FlexIO’s high level
programming interface makes changes in placement
transparent to simulation and analytics codes. Users can even
seamlessly switch analytics to run offline when there are
insufficient online resources for their timely execution.

3) Runtime performance monitoring collects information
about computation and data movement that is useful to
scientists and automated runtime management systems for
performance understanding and placement decisions.

4) Mobile codelets, termed “Data Conditioning (DC)
Plug-ins”, can be dynamically deployed and migrated along
the I/O path, to perform useful on-the-fly data manipulation
such as data selection, sampling and transformation.

5) FlexIO enables various placement policies to exploit
the location flexibility for tuning application performance,
CPU usage, and data movement cost. Based on FlexIO, we
implement a holistic placement policy which reduces both
inter and intra program data movement costs. We also devise
a node topology aware policy which takes into account the
impact of cache topology on analytics placement.

FlexIO operates on both Infiniband and the new Cray
XK6 with Gemini interconnect. It has been applied to two
leadership scientific applications: GTS fusion simulation and
S3D combustion simulation. Experiments show that
leveraging the flexibility enabled by FlexIO to tune analytics
placement can improve applications’ performance by up to
30% compared to inline-only solutions and the benefit is
more evident at larger scales..

The remainder of the paper is organized as follows.
Section II describes the design and implementation of the
FlexIO middleware. Section III describes how to automate
placement of analytics driven by performance and cost
metrics. Section IV shows performance improvements for
two large-scale scientific applications due to flexible
analytics placement. Section V reviews related work and
Section VI concludes the paper.

II. FLEXIO DESIGN AND IMPLEMENTATION

A. System Overview
The FlexIO software stack is depicted in Figure 2.

Simulation and analytics codes use the ADIOS [28]
read/write API for data exchange. The FlexIO runtime
handles buffer management, parallel data re-distribution, and
performance monitoring. It also manages “Data Conditioning
Plug-Ins” which are mobile codelets compiled, deployed,
and executed at runtime for on-the-fly data manipulation.
Runtime performance monitoring provides information for
scheduling data movements and for dynamic DC Plug-in
placement and can also be retained for offline performance
tuning. At the lowest transport level, FlexIO uses efficient

321

RDMA and shared memory data movements for inter- and
intra- node movements, respectively. The choice of low level
transport is automatically configured according to the
placement of online analytics.

FlexIO leverages the ADIOS [28] parallel I/O library
which provides meta-data rich read/write interfaces to
simulation and analysis codes. ADIOS has a set of built-in
I/O methods under its higher level API to support various file
I/O methods (such as MPI-IO, HDF5, and NetCDF) as well
as data staging methods [2] [4]. Switching between different
methods can be configured through an external XML
configuration file, without modification to application codes.
ADIOS has been used by several leadership scientific codes
and is integrated with popular analysis and visualization
tools that include Matlab, ParaView, and VisIt.

FlexIO inherits from ADIOS useful features like its high
level API and file I/O methods (to enable offline placement),
and its implementation benefits from our previous work on
RDMA-based data movement and staging. New
functionalities compared to such prior work include an
ADIOS stream read interface, methods for parallel memory-
to-memory multi-dimensional array re-distribution, efficient
data movement for Cray XK6 systems with the Gemini
interconnect, cache efficient on-node data movement via
shared memory, intelligent buffer management, enriched
performance monitoring, and mobile DC Plug-ins. In total,
FlexIO is a system that supports diverse analytics placements
via efficient built-in methods for data movement between a
simulation and analytics components.

B. Hig Level Interface
The high-level interface of FlexIO extends the existing

ADIOS file read/write API with three goals: 1)
expressiveness in supporting common I/O patterns for
simulation and analytics codes; 2) backwards compatibility
with the existing ADIOS file I/O interface; and 3) easily
switched underlying transports.

Conceptually, the FlexIO interface allows simulations to
pass data to analytics via “files”, and to operate on these
“files” in either file or stream modes. In both modes, the data
model is compatible with the existing ADIOS data model,
where the simulation output data is logically time-indexed,
and each timestep of output data is a group of variables of
scalar or array types. In the file mode, data is written to the
file system and read back by analytics, using one of ADIOS’
file I/O methods. The file mode is for backwards
compatibility with the existing ADIOS file I/O interface.

The newly added stream mode is specifically intended
for memory-to-memory data movement between simulation
and online analytics. Here, the simulation creates a “file”
with some unique name, and the analytics opens the named
“file”, but internally, this establishes connections to
simulation processes via the underlying transport. Simulation
processes, then, periodically write data to the “file”, and the
data is passed to analytics as return parameters of their read
calls (again, the underlying transport handles actual data
movement). When the simulation closes the “file”, the
connections are closed by the transport and analytics
components receive End-of-Stream as return values from
their read calls. As a result, stream mode is compatible with
file I/O in that it can be switched with file mode without
code changes.

For stream mode, there are two common I/O patterns for
high end applications. The first is for process-group-oriented
data exchanges: during each I/O timestep, the variables
written from each simulation process are conceptually
packed into a group, called “Process Group”, and the
analytics specifies the process groups it wants to read by
simulation processes’ MPI ranks. The other pattern is a
global array data exchange, where some multi-dimensional
array, distributed among several simulation processes, is
passed to several analytics processes. As in other MxN data
exchanges [3], however, analytics processes may specify an
array distribution or layout different from that present on the
simulation side. In response, FlexIO properly chunks, splits,
transfers, and re-organizes the array data exchanged between
simulation and analytics, as shown in Figure 3.

The high-level API makes it easy to change underlying
transports, without the need to change applications. A one-
line update to the configuration file is sufficient to switch
between file I/O and online data movement transports, and
intra- vs. inter-node transports are automatically configured
according to the placements of communicating simulation
and online analytics processes. To tune transports, transport-
specific parameters specified as hints in an XML
configuration file are passed to the FlexIO runtime. We refer
readers to [18] for details of the interface specification.

C. Data Movement Protocols
There is considerable complexity in presenting to end

users a convenient API, yet also providing placement
flexibility and high performance. Key to this complexity is
that the FlexIO runtime must translate the high-level API
calls into actual data movements between simulation and
analytics processes using low-level RDMA or shared

Simulation / Analytics Codes

FlexIO API

File
I/O

Shared Memory
(SysV, mmap, Xpmem)

RDMA
(InfiniBand, SeaStar/Portals, Gemini)

EVPath Messaging Library

Parallel Data
Movement DC Plug-ins Performance

Monitoring
Buffer

Management

FlexIO Runtime

Figure 2. FlexIO Software Stack

0 1 2
3 4 5
6 7 8

0 1

0 1 2 3 4 5 6 7 8

0 1
Figure 3. Global Array Re-distribution. A 2D array is distributed
among 9 simulation processes and passed to 2 analytics processes.

322

memory transports. As shown in Figure 3, the MxN
mapping, i.e., which simulation process should send which
piece of its data to which analytics processes, is determined
by the overlapping portion(s) of data specified in the
simulation’s write and analytics’ read calls, respectively.
Establishing the necessary connections and transferring data
efficiently at large scales is a non-trivial task. Below we
describe the connection management and data transfer
protocols used by the FlexIO runtime.

1) Connection Management
Before actual data movement, simulation and analytics

programs connect to each other via assistance from an
external directory server. To avoid overloading this server,
simulation and analytics processes, respectively, elect a local
coordinator. When creating a file in stream mode, the
coordinator of the simulation registers with the directory
server a file name associated with its own contact
information. When the analytics opens that file, its
coordinator looks up the server with the file name, retrieves
the contact information of the simulation’s coordinator, and
makes a connection with it. The directory server is involved
only in discovery and connection setup and is not in the
critical path of actual data movements.

2) Data Movement
To move global array data between two parallel

programs, array data must be transferred according to the
data distributions at both sides. The FlexIO write and read
API captures the array distribution among simulation and
analytics processes, respectively. Based on this information,
the FlexIO runtime generates the re-distribution mapping. At
each side, coordinators first gather array distributions for all
processes (Steps 1.s and 1.a, respectively), exchange the
distribution information with each other (Step 2), and then
broadcast the peer-side distribution to all processes (Step 3).
At this point, each process knows the array distribution of all
other peer processes, so that it can calculate the mapping
independently. Each sender process packs strides for each
receiver process with overlapping array index range, and
sends the packed strides to each receiver process (Step 4.s).
Each receiver prepares a receive buffer based on the
mapping and copies received strides into the appropriate
target buffer (Step 4.a). The Process-Group-oriented data
movement pattern is implemented in a similar fashion.

There are several optional optimizations. First, write side
calls can be either synchronous or asynchronous. The
asynchronous API helps overlap data movement with other
activities like the simulation’s computation.

The second optimization is batching. The default
granularity of data movement is per-variable. Users can
instruct FlexIO to pack multiple variables and transfer them
in a batch. This will cause both handshaking and data
messages to be aggregated.

The third optimization is caching to reduce the cost of
handshaking. By default, the complete handshaking protocol
(Step 1 to 4 as described above) is performed for each
variable at each I/O timestep. If distribution information and
buffer addresses are unchanged across timesteps, then some
or all of the handshaking steps can be avoided by reusing
existing information from previous timesteps. The sender or

receiver can inform the FlexIO runtime about three possible
caching options:

i) NO_CACHING: perform the full handshaking
protocol;

ii) CACHING_LOCAL: re-use local side distribution
information (skip Steps 1), but still exchange distribution
information with peer side (perform Step 2 to 4);

iii) CACHING_ALL: re-use both local and peer sides’
distribution data, so that handshaking is completely avoided.

FlexIO uses the EVPath messaging library [12] to
implement its data movement protocols. EVPath provides
point-to-point messaging and data marshaling capabilities.
Its modular architecture supports multiple messaging
transports, and we have added to it the shared memory
transport and the RDMA transport required by FlexIO.

D. Shared Memory Transport
The shared memory transport is for intra-node data

movement. Using it, small messages like handshaking
messages are passed through data queues in shared memory
segments. Each data queue is a single-producer, single-
consumer, circular, lock-free FIFO queue inspired by
Fastforward [17]. The producer and consumer have separate
pointers to the next entry to enqueue or dequeue, and these
pointers are guaranteed to be placed into different cache lines
to reduce cache coherency traffic. Each entry in queue has a
payload field of fixed-size and a status flag with two possible
states: full or empty. Entries in data queues are carefully
aligned and padded to make sure they do not share cache
lines, so as to reduce false sharing. During data movement,
the consumer polls the flag of the next entry to dequeue. The
producer first checks that the next entry to enqueue is
marked as “empty” before copying data into it. The flag is
then set to “full”; this signals the consumer, which then
copies data from the entry into the target receive buffer and
sets flag to “empty” to release the entry to the producer. On
systems with weak memory consistency, additional memory
fences are inserted.

For large messages such as actual simulation output data,
a shared memory buffer pool is used. The producer pre-
allocates a shared memory buffer pool indexed with a free
list. When sending a large message, the producer tries to find
a buffer of the closest size in the pool (and allocates one if
not found), copies the message into it, sends a control
message to the data queue, and returns if it is an
asynchronous movement. The consumer extracts the address
and length from the control message, copies data from the
shared memory buffer into target buffer, and returns the
buffer to the producer’s free list. Thus two memory copies
are needed for sending large messages asynchronously.

On the Cray XK platform, our shared memory transport
leverages page mapping support from the XPMEM kernel
module [48] to reduce memory copy overheads. During
synchronous large message transfers, the producer makes its
source buffer available for sharing by calling
xpmem_make(), and sends the shared memory segment id
through the data queue. The consumer then gets the memory
handle, maps the producer’s send buffer into its address
space, and copies data to the target receive buffer.

323

E. RDMA Transport
The RDMA transport in EVPath is for inter-node data

movement. It is built on top of Sandia National Laboratory’s
NNTI library [27]. NNTI implements a uniform set of APIs
(including Connect, Memory Register/Unregister, RDMA
Put and Get) above ibverbs, Portals, and uGNI. It therefore,
provides a portability layer among different interconnects
(IB, SeaStar and Gemini). Based on NNTI, the EVPath
RDMA transport implements buffer management and several
optimizations for high performance RDMA data movement.

Dynamic buffer allocation and memory registration can
cause significant overheads in RDMA-based data movement.
Figure 4 demonstrates this with a point-to-point RDMA Get
bandwidth test on the Cray XK 6. This is particularly an
issue for applications generating particle data, since the
number of particles written by a simulation process may
change across timesteps due to particle movement. One
solution to reduce this cost is to use a persistent buffer and
registration cache, as in MPI [34] and Charm++ [38]. We use
a similar approach: allocated and registered send and receive
buffers are temporarily kept in a buffer pool; later data
transfers try to reuse those buffers whenever possible. A
configurable threshold value controls total memory usage
and triggers buffer reclamation, if necessary.

For small messages, a pair of message queues is
established between two interacting processes for two way
messaging. The sender process uses NNTI’s RDMA Put to
send a message into the receiver process’ message queue.
For the Cray Gemini interconnect, this uses FMA Put to send
the data. For large message transfers, we use receiver-
directed RDMA Get for data movement. The sender process
first copies the message into a send buffer acquired from the
buffer pool and sends to the receiver a small control message
containing the address and size of the send buffer. The
receiver prepares a receive buffer, and issues RDMA Get to
fetch data according to some scheduling policy. For Gemini,
RDMA Get is implemented with uGNI’s BTE RDMA
operation. The scheduling technique is leveraged from our
previous work in data staging [2]; and its use can effectively
reduce network contention.

F. Data Conditioning Plug-ins
Data Conditioning Plug-ins are mobile codes embedded

in the FlexIO transport. They are triggered to perform
operations on data during the exchange of data between
simulation and analytics. DC Plug-ins can be executed
within the address space of either the simulation or analytics,
and they can be migrated across address spaces at runtime.

DC Plug-ins are stateless codelets created on the reader
side (e.g., analytics) to customize writer-side outputs on the
fly. Useful examples of DC Plug-ins include data markup,
annotation, sampling, bounding box, unit conversion, etc.
They are typically lightweight in terms of compute and
memory usage, and are easily programmed with the C subset
offered by the C-on-Demand (CoD) [11].

DC Plug-ins are specified as parameters to FlexIO read
API calls. Their code strings are compiled and installed in
the appropriate process’ address space through the dynamic
binary code generation offered by CoD. The code can be

executed at either the analytics side or simulation side.
Runtime deployment of DC Plug-ins from the analytics side
into simulation processes is through a communication
channel separate from the ones used for data movement. DC
Plug-in placement is informed from the caller. Compared to
our previous work [2], DC Plug-in has better scalability and
is fully integrated with the FlexIO infrastructure; we have
also implemented various runtime data manipulation
functionality and management policies with DC Plug-ins to
further enhance the I/O path (more details in Section IV).

G. Performance Monitoring
FlexIO monitors the performance of simulation,

analytics, and DC Plug-ins. There are measurement points at
all levels of the FlexIO software stack to gather a variety of
information, including the timing of data movement and DC
Plug-in execution, as well as transferred data volumes.
Dynamic memory allocation points within FlexIO are also
instrumented to record memory usage during data
movement. Optionally, information about the computation
and communication behavior of simulation and analytics can
also be obtained by explicitly instrumenting the codes.

Performance information is used in two ways. For offline
performance tuning, monitoring information can be dumped
to trace files, and the developer can use it to understand and
tune analytics codes. For runtime management, monitoring
data captured from the simulation side can be gathered
online and transferred to the analytics side. The analytics
process(es) can then use it to dynamically schedule data
movement and decide the placement of DC Plug-ins.

H. Implementation Status
FlexIO has been implemented and operates on Cray XT5,

XK6,and InfiniBand clusters. Earlier, we applied FlexIO to
an online analysis and visualization pipeline for the Pixie3D
application on the Cray XT5 [54]. We have also used it to
implement analytics for two other applications -- GTS and
S3D (details in Section IV). Regarding resiliency, the current
version uses simple timeout-and-retry schemes to cope with
errors and failures during data movement, but we are
planning to incorporate our recent work on a distributed
transaction protocol [26] into future version of FlexIO.
Features of FlexIO are publically available in the latest
release of the ADIOS [18] software.

0

1000

2000

3000

4000

5000

6000

7000

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (Bytes)

Dynamic Allocation and Registration

Static Allocation and Registration

Figure 4. Cost of Dynamic Buffer Allocation and Registration in

RDMA Get on Cray XK6 with Gemini Interconnet.

324

III. EXPLOITING PLACEMENT FLEXIBILITY
FlexIO makes it possible to tune analytics placement to

improve performance and/or reduce cost: it provides
performance information that can aid in placement decision,
and it can automatically configure the underlying transport to
enforce any placement decision made by users. To illustrate
the importance of this, this section describes three placement
algorithms realizing different placement policies. Our
purpose is not to show ‘best’ policies, but instead, to show
how FlexIO makes it easy to implement alternative methods
suitable for different usage scenarios. This is important
because there may be frequent changes to analytics codes
and to the configurations of I/O pipelines, to support
evolving scientific processes. The heuristic algorithms
shown find satisfactory placements for large scale simulation
and analytics within reasonable time frames. They assume
that simulation and analytics exhibit steady runtime behavior
so that placements can be statically determined and enforced
at job launch time. Such assumption holds for most of the
practical use cases we have encountered.

Placement algorithms: 1) optimize some objective (e.g.,
minimizing total execution time); 2) use a resource allocation
policy that determines how much resource to allocate to
simulation and analytics components; and 3) carry out a
resource binding policy that decides the process/thread to
physical resource mapping.

A. Performance and Cost Objectives
The following performance and cost metrics (initially

defined in [52]) are of interest to science end users.
Total Execution Time: the time from the start of

simulation and analytics to the completion of both.
Total CPU Hours: the total nodes used multiplied by the

total execution time (in units of hours). This metric measures
the cost of a run, as supercomputing centers commonly
charge users with the CPU hours consumed by their jobs.

Data Movement Volume: the amount of data moved
between simulation and analytics.

B. Placement Algorithms
1) Data Aware Mapping. The data aware mapping

algorithm introduced in [51] takes as input a communication
matrix recording the data movement volume between
simulation processes and analytics processes. It applies graph
partitioning to divide simulation and analytics processes into
as many groups as the number of nodes, and then assigns
each process group to a node with each process mapped to
one core. Data aware mapping is essentially a resource
binding algorithm, and it tends to place frequently
communicating processes from different programs onto the
same node.

2) Holistic Placement. We extend data aware placement
to holistically treat two additional issues: i) to carry out
resource allocation, in addition to simply deciding resource
bindings, and ii) to also consider the data movements within
parallel simulation and analytics programs (e.g., their MPI
communications). Termed ‘holistic placement’, we have
experimented with two algorithm variants, for synchronous
vs. asynchronous data movement scenarios, respectively.

These algorithms take as input the input configuration of the
simulation and the strong scaling function of analytics.
Performance profiling is used to obtain such information.

When data movement between simulation and analytics
is synchronous, holistic placement works as follows. During
resource allocation, the analytics are scaled to match the data
generation rate of the simulation. The idea is that simulation
and analytics form a two-stage pipeline and hence, matching
the analytics’ data consumption rate with simulation’s data
generation rate leads to minimal pipeline stalls. The output of
the resource allocation step is the number of processes
needed to run analytics.

During resource binding, the algorithm constructs a
communication matrix that records both inter- and intra-
program data movement. It models the target parallel
machine as a two-level tree in which cores of the same node
are siblings and have less communication cost with each
other than with cores on different nodes. It then uses the
graph mapping algorithm provided by the SCOTCH library
[36] to map the communication graph to the architecture
graph. Compared to data aware mapping, holistic placement
1) captures the trade-off between inter- and intra- program
communication, and 2) can be easily extended to model the
machine architecture in greater detail (as will be shown in
the third algorithm).

When data is moved asynchronously between simulation
and analytics, the algorithm additionally considers the
asynchrony effect of data movement. Asynchronous data
movement overlaps with other activities such as the
simulation’s computation. Accordingly, unlike the
synchronous case, the resource allocation step must ensure
that the sum of data movement time and analytics
computation time is no larger than the simulation’s I/O
interval. Data movement time is estimated as total data size
divided by point-to-point RDMA transport bandwidth. This
estimation is conservative because it assumes data are moved
to analytics sequentially (from one simulation process at a
time) through the interconnect instead of shared memory,
and it may lead to resource over-provisioning for analytics.
However, given that analytics usually runs at a much smaller
scale than the simulation, such over-provisioning is unlikely
to cost significant additional resources and may even be
beneficial to accommodate variations in analytics running
times. The resource binding step for asynchronous case is the
same as for synchronous case described above.

3) Node Topology Awareness: To demonstrate the ease
with which placement policies can be changed in FlexIO, we
explore one additional generalization of the holistic mapping
algorithm, designed to take into account the complicated

C15

. . .

C0 C1 C2 C3 C12 C13 C14

C
5

2MB Shared L3 Cache

C
4

C
6

C
7

Memory Controller

C
1

2MB Shared L3 Cache

C
0

C
2

C
3

Memory Controller

C
13

2MB Shared L3 Cache

C
12

C
14

C
15

Memory Controller

C
9

2MB Shared L3 Cache

C
8

C
10

C
11

Memory Controller

Figure 5. A Multi-Socket NUMA Node Architecture

325

cache topologies and deep memory hierarchies of modern
multi-core processors. Figure 5 shows the memory structure
of a machine with four quad-core AMD Barcelona
processors and four NUMA domains. Cores share different
levels of cache and memory resources, which results in non-
uniform on-node communication times between cores.

Node topology aware placement, then, further extends
holistic placement by modeling the target machine as a
multi-level hierarchy: cores within the same node are placed
at different levels of the tree according to the cache topology.
The graph mapping algorithm (used in holistic placement as
described above) is then applied to map the communication
graph onto the hierarchical architecture tree and generate
process-to-core binding.

For NUMA machines, the algorithm not only decides
process-to-core binding, but also determines the placement
of FlexIO’s internal buffers in memory. Our default policy is
that the shared memory data queues and buffer pools are
placed into simulation processes’ local NUMA domain no
matter where communicating analytics processes are located.
This arrangement facilitates the simulation’s access to those
data structures but may penalize analytics’ access. The idea
is that in most cases, the simulation is the performance-
bounding part in the producer-consumer pipeline, while the
analytics are more tolerant of slower data movement.

IV. PERFORMANCE EVALUATION
In this section, we present experimental results obtained

from tuning placements of analytics for two large-scale
applications: GTS and S3D. We also demonstrate the utility
of Data Conditioning Plug-ins to enable dynamic placement
of analytics at runtime.

Experiments are run on Oak Ridge National Laboratory’s
Titan Cray XK6 and Smoky cluster. Titan is upgraded from
the Jaguar Cray XT5 and equipped with 18,688 compute
nodes, 960 of which contain GPUs. Each compute node has
a 16-core 2.2GHz AMD Opteron 6274 (Interlagos) processor
and 32GB of RAM. Titan uses the Gemini interconnect.
Smoky is an 80 node cluster. Each compute node has four
quad-core 2.0GHz AMD Opteron processors (as shown in
Figure 5) and 32 GB of memory. The Smoky cluster uses
DDR InfiniBand interconnect. Both Titan and Smoky have
access to the center-wide Lustre file system.

A. GTS Performance
GTS (Gyrokinetic Tokamak Simulation) is a global

three-dimensional Particle-In-Cell (PIC) code used to study
the microturbulence and associated transport in magnetically
confined fusion plasma of tokamak torodial devices [47].
GTS simulation outputs particle data containing two 2-
dimensional particle arrays for zions and electrons,
respectively. The two arrays contain seven attributes for each
particle, including coordinates, velocity, weight and particle
ID. The particle data is processed by a series of analysis
steps, including the calculation of particle distribution
function and a range query on the velocity attributes of all
particles. The query result is ~20% of the original output
particles. 1D and 2D histograms are generated from the
query results and written to files which can then be used for

parallel coordinates visualization. The analytics code uses
FlexIO’s stream mode to read particles data and follows the
process-group-oriented I/O pattern.

We run GTS with a typical production run configuration,
which results in particle data output size of 110MB per
process. GTS is run in OpenMP/MPI hybrid mode, as
suggested by the GTS team. It outputs particle data every
two simulation cycles, as desired by scientists.

1) Tuning Placement of Analytics
We use the approaches described in Section III to place

analytics for GTS. For resource allocation, we apply the
holistic placement policy to decide the number of processes
to run analytics so that the data consumption rate matches
GTS simulation’s I/O frequency. After completing resource
allocation, all three placement algorithms leverage inter-
process communication volumes to determine process to
core binding. Furthermore, since GTS itself can be strong-
scaled for a fixed input problem size by varying number of
OpenMP threads per MPI process, we decide the placement
for each of GTS configurations with different number of
OpenMP threads. We compare the resulting performance and
cost of different configurations and placements.

Figure 6 (a) shows the Total Execution Time of the
coupled GTS simulation and analytics with different
placements at various scales on Smoky (weak scaling is
applied). At all scales, all three algorithms decide to place
analytics on Helper Cores in compute nodes (there are still
differences among them, as will be explained later). The
particular helper core placement found by node topology
aware algorithm consistently shows the best performance:
GTS is configured to run with 3 OpenMP threads per MPI
process, and every 4 MPI processes are placed on each
compute node; 4 analytics processes are placed on the

200

300

400

500

600

700

128 256 512 1024

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

GTS Cores

Inline
Helper Core (Data Aware Mapping)
Helper Core (Holistic)
Helper Core (Node Topo. Aware)
Staging
Lower Bound

(a) Total Execution Time on Smoky

200

230

260

290

320

350

512 1024 2048 4096

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

)

GTS Cores

Inline
Helper Core (Data Aware Mapping)
Helper Core (Holistic)
Helper Core (Node Topo. Aware)
Staging
Lower Bound

(b) Total Execution Time on Titan

Figure 6. GTS Performance Tuning on Smoky and Titan.

326

remaining 4 cores of each node (i.e., the Helper Cores); GTS
processes pass data to analytics processes through shared
memory transport whose internal buffers are pinned in local
NUMA domains. Besides, the GTS processes are placed
onto nodes so that their 2D grid communication pattern is
aligned with the target machine modeled as a 3-level tree.

In comparison, the holistic placement algorithm maps
GTS and analytics processes onto nodes in the same way as
node topology aware placement. However, since it ignores
the NUMA structure of each node, it maps GTS threads and
analytics processes linearly to cores within each node.
OpenMP threads of some GTS processes are placed across
NUMA boundaries, which hurts performance by up to 7.0%
on Smoky. The placement found by data aware mapping
algorithm has comparable performance as holistic placement.
Largely this is because GTS performance is in-sensitive to
process placement and hence ignoring its internal
communication in placement decision does not cause notable
performance penalty. However, data aware mapping is still
outperformed by node topology aware placement by up to
9.5% due to its ignorance of NUMA structure.

We also place analytics inline and on a set of separate
staging nodes. With inline placement (Case 2 in Figure 7),
the GTS processes directly call analytics routine. On Smoky
whose compute nodes has 16 cores each, we run GTS with 4
OpenMP threads per MPI process and place 4 MPI processes
on each compute node. In comparison, the helper core
placement takes 1 core from GTS and offloads analytics onto
that core (Case 1 in Figure 7). Such offloading is beneficial
for two reasons. On one hand, GTS running with 4 OpenMP
threads cannot make full use of all cores within a compute
node due to the fact that there are code regions in GTS where
only main thread is active. Taking 1 core out of 4 from a
GTS process only slows down GTS by 2.7% (as indicated by
the increase of simulation “cycle1” and “cycle2” time from
Case2 to Case 1). On the other hand, the inline analytics
weighs 23.6% of GTS runtime, so offloading analytics to
helper core reduces Total Execution Time.

When placing analytics onto separate staging nodes, data
are moved to staging nodes through RDMA transport.
Compared to the helper core placement, the pitfalls of
placing analytics in staging nodes are: 1) huge amounts of
particle data are moved through interconnect which
consumes more power than on-node movement; 2)
asynchronous bulk data movement can interfere with
simulation’s MPI communication. We have to carefully set
the asynchronous data movement scheduling policy to keep
the GTS slowdown under 15%.

In terms of CPU hours cost, Inline placement is the worst
due to penalty of running non-scalable analytics at large
scales. Helper core placement use the same core counts as
Inline placement but consumes less CPU hours by finishing
faster. Staging placement is worse than helper core
placement since it allocates additional nodes but does not
achieve better total execution time.

In terms of data movement volume, both inline and
helper core placement avoid moving particle data between
simulation and analytics through interconnect, while staging
placement causes all particle data moved through

interconnect. On the other hand, since staging placement
maps analytics processes closer to each other than the other
two placements, staging placement helps reduce the amount
of analytics’ internal MPI communication which go through
interconnect. Overall, since inter-program data movement is
dominant and analytics runs local query to reduce data,
helper core and inline placement reduces inter-node data
movement by about 90% over staging placement.

Figure 6 (b) shows placement tuning results on Titan.
Similar to Smoky results, on Titan which has 2 NUMA
domains and 8 cores in each, running GTS with 7 OpenMP
threads per MPI process and analytics on a separate helper
core within the NUMA domain results in the best
performance and cost.

2) A Closer Look at Helper Core Placement
Figure 7 (Case 1) shows that GTS and analytics

experience nearly invisible I/O overhead thanks to the shared
memory transport. It also shows that analytics processes are
idle for 67% of time, indicating over-provisioning for
analytics due to our conservative resource allocation policy.

The downside of placing simulation and analytics on the
same node is interference between them due to contention on
shared on-node resources. To assess such interference, we
test two cases: i) GTS with 3 OpenMP threads runs in solo
and does no I/O or analytics (Case 3 in Figure 7) vs. ii) GTS
with 3 OpenMP threads runs with analytics placed on helper
cores (Case 1 in Figure 7). Figure 8 shows the aggregated L3
cache miss rate (measured in L3 cache misses per 1K
instructions) seen by all GTS threads in simulation main loop
in two cases (hardware performance counters are recorded
with PAPI [31]). GTS experiences 47% more L3 cache
misses when analytics runs on helper core and share L3
cache with it, and its simulation time (“cycle1” and “cycle2”
in Figure 7) increases by 4.1%. Achieving better
performance isolation between simulation and analysis when
they are placed on the same node is part of our future work.

3) How Close is Our Solution to the Optimal?
The runtime of GTS which runs solo with 4 OpenMP

threads and does not perform I/O or analytics can be
considered as the Total Execution Time when data

0 5 10 15 20 25 30

GTS (3 OpenMP Threads)
Solo

GTS (4 OpenMP
Threads), Analytics Inline

GTS (3 OpenMP Threads)

Analytics on Helper Core

Time (Seconds)

Sim. Cycle1 Sim. Cycle2 I/O Analysis Idle

Case 1

Case 2

Case 3

Figure 7. Detailed Timing of GTS and Analytics. GTS runs with 128 MPI

processes on Smoky.

0 0.25 0.5 0.75 1 1.25
LLC Misses per Thousand Instructions

GTS (3openmp threads) with analytics on helper core

GTS (3 openmp threads) solo

Figure 8. Last Level Cache Miss Rates of GTS on Smoky.

327

movement and analytics are “free” (no resource usage) and
infinitely fast. This value is therefore less or equal to the
optimal Total Execution Time of coupled simulation and
analytics. The best placement solution which we have found
is at most 7.9% larger than this lower bound (dashed lines in
Figure 6) with the same core count used at all scales on
Titan, and at most 8.4% on Smoky.

B. S3D Performance
S3D is a state-of-the-art flow solver for performing direct

numerical simulation (DNS) of turbulent combustion [20].
We use a modified version of S3D code called S3D_Box
created by the S3D team for our test. S3D_Box performs a
portion of the full S3D simulation. During its execution,
S3D_Box periodically outputs species data which are 22 3-
dimensional double-typed arrays. The species data is fed into
a parallel volume rendering code [49] to visualize images for
each every species. The visualization code reads data by
specifying global array index ranges and FlexIO handles
MxN data re-distribution underneath. We set the input
parameters so that during each I/O action, the total size of 22
arrays generated by each simulation process is 1.7MB, which
is the same as typical production S3D runs. The simulation
writes species data out every ten simulation cycles.

1) Tuning Data Movement
Data movement between simulation and visualization

exercises FlexIO’s Global-Array-oriented I/O pattern. Since
arrays’ distribution and memory addresses do not change
over time at neither simulation nor visualization side, we set
the caching option to CACHE_ALL to avoid several
gather/scatter and handshaking messages during data
movement (as described in Section II.C). We also enable
batching so that all 22 arrays are packed and sent together in
a batch. Besides, simulation’s write calls are set to be
asynchronous. Those tuning efforts significantly reduce the
simulation-visible data movement time on both Titan (from
1.2 to 0.053seconds when S3D_Box runs on 1K cores with
RDMA transport) and Smoky (from 4.0 to 0.077seconds
when S3D_Box runs on 1K cores with RDMA transport).
And due to the small output data size, asynchronous data
movement does not cause visible impact on simulation’s
internal communication. The tuning is enforced through
setting hints in external XML configuration file and requires
no changes to simulation or visualization source code.

2) Tuning Placement of Analytics
We apply the three heuristic algorithms to decide

placement of the visualization for S3D_Box. The resource
allocation step determines a 128:1 ratio between simulation
and analytics processes. For S3D case, the intra-program
MPI communication volume is dominant over inter-program
data movement due to relative small output data size and low
I/O frequency. Under this situation, both holistic placement
and node topology aware placement deploy visualization
processes onto separate nodes (i.e., Staging Nodes) and use
RDMA transport to move data between simulation and
visualization processes. They also place S3D_Box in a 3D
block decomposed fashion to respect S3D_Box’s logical 3D
process layout. Node topology aware placement achieves
slightly better performance than holistic placement by further

aligning processes’ communication with compute node’s
NUMA structure (as shown in Figure 9).

The Data Aware Mapping algorithm places each
analytics process close to those simulation processes which
intensively communicate with it. This ends up placing
visualization processes in a hybrid manner: a visualization
process receives data from simulation processes both on
local node and on remote nodes. Since the inter-program
data movement volume is much less than internal MPI
communication, putting simulation and visualization close to
each other does not pay off sufficiently, but meanwhile such
hybrid placement increases the amounts of S3D_Box’s MPI
communication that goes across interconnect and increase
Total Execution Time compared to the staging placement.

We measure the performance with inline placements.
Staging placement is better than inline because asynchronous
data movement and running simulation and visualization
computation (and writing rendered image to files in PPM
format) as a two-stage pipeline can effectively hide the cost
of I/O and analytics computation. Due to insufficient
scalability of file I/O, the advantage of staging placement
over inline increase at larger scales. Staging placement also
consumes less CPU hours than Inline, since it use 0.78%
additional resources but improves Total Execution Time by
up to 19% and 30% on Smoky and Titan, respectively.

3) How Close is Our Solution to the Optimal?
The runtime of S3D_Box when it runs solo and does not

perform I/O or analysis gives the lower bound of the optimal
Total Execution Time (dashed lines in Figure 9). With less
than 1% extra resources, the staging placement is at most
3.6% larger than the lower bound on Titan, and 5.1% on
Smoky.

600

700

800

900

1000

1100

1200

1300

128 256 512 1024

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

)

S3D-Box Cores

Inline
Hybrid (Data Aware Mapping)
Staging (Holistic)
Staging (Node Topo. Aware)
Lower Bound

(a) Total Execution Time on Smoky

300

350

400

450

500

550

600

512 1024 2048 4096

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

)

S3D-Box Cores

Inline
Hybrid (Data Aware Mapping)
Staging (Holistic)
Staging (Node Topo. Aware)
Lower Bound

(b) Total Execution Time on Titan

Figure 9. S3D_Box Performance Tuning.

328

In summary, for S3D, placing visualization on a set of
staging nodes and aligning both inter- and intra-program data
movement with underlying architecture gives the best
performance and cost, and the savings of tuning placement is
more evident at larger scales.

C. Utility of Data Conditioning Plug-ins
FlexIO’s Data Conditioning Plug-in enables dynamic and

flexible computation placement along I/O path. Applications
can leverage this feature to implement effective runtime
policies to customize simulation output data on-the-fly, or
adapt to dynamic variations in workloads or environment.
We demonstrate the utility of DC Plug-ins with examples.

1) Dynamic Data Selection
A common practice for scientists to monitor simulation

status is to let simulation periodically output a set of
variables and run validation codes on those data. We
implement an instance of DC Plug-in for GTS simulation
with which validation code can specify the particle
attribute(s) it wants to check, and this DC Plug-in can be
dynamically deployed and run at either simulation or local
analytics side. We use three data selection instances which
select 1, 3, and 7 attributes from all 7 attributes of particles,
respectively. On Smoky, we run GTS on 256 cores and the
validation analytics on separate 32 cores. Figure 10 shows
the measured simulation runtime and data movement volume
between simulation and analytics when data selection plug-in
is deployed at simulation side, and compares the results
when all the original particle data are moved to validation
analytics (“No Plug-in”). Deploying data selection plug-in
with large data reduction ratio onto data source (simulation)
can effectively reduce data movement, and cause negligible
overhead to simulation blocking I/O time. In fact, reducing
data movement volume also improves simulation runtime
due to reduced contention on interconnect.

2) Load Shedding
If the analytics consumes data slower than simulation

generates data, it will blocks simulation and may cause huge
waste of CPU cycles at large scale. Under this situation, DC
Plug-ins can be used to either shift workload from analytics
to simulation or reduce data being moved downstream so
that load on analytics side is alleviated. To demonstrate this,
we implement a data staging service for GTS which
asynchronously moves output data from simulation and
dumps data to files. We emulate a situation where the file
system is experiencing severe congestion so writing to file is
very slow (which does happen in practice) and causes back-
pressure to simulation. To cope with this situation, the
staging server instantiates a sampling DC Plug-in at
simulation side which samples one out of every 100 particles
of the original simulation output data. A simple policy is
used to trigger load shedding: sampling plug-in is installed to
simulation side if monitored simulation’s running-average
blocking I/O time exceeds a pre-defined threshold value. The
dynamic code generation requires only 0.5msecs, so code
deployment has an insignificant impact on the running
system. The resulting sampling code requires only 220 x86
instructions. Figure 11 compares the steady state time before
vs. after DC Plug-in is deployed. The sampling Plug-in helps

reduce data fetch time and staging server’s file writing time
and releases GTS simulation from blocking.

To summarize, experiments show that FlexIO can
support a variety of simulation and analytics workloads at
large scales through flexible placement options, efficient data
movement, and dynamic deployment of useful data
manipulation functionalities.

V. RELATED WORK
Online data analytics and visualization has gained much

recent attention from the HPC community. Current work
falls into two categories: (1) new data analytics and
visualization algorithms, including in situ indexing [45],
compression [23], feature extraction [4], and various
visualization techniques [41][49], and (2) supporting tools
and infrastructures like those mentioned in Introduction.

Computation placement is an extensively studied topic in
distributed systems due to its significant impact on
application performance and cost. Particularly relevant is
previous work on computation placement within the Active
Storage context. Abacus [1] uses an online performance
model to guide the dynamic placement of application and file
system functions among clients and servers to adapt to a
variety of application and system runtime characteristics, but
it assumes a progressive, per-record computation model. [46]
studies load distribution of a class of streaming computation
in an active storage system. Diamond [19] aggressively
places filters to data sources to reduce search operation costs.

The importance of placement has also been exploited in
other distributed computing models. Streaming operator
placement on wide-area overlay network has been studied in
[31]. COLA [21] applies graph partitioning to place a
streaming processing dataflow onto a cluster of nodes with
load balance and throughput as the major optimization
objectives. Armada [30] uses similar graph partitioning
techniques to distribute in-network operations within a Data
Grid to improve I/O performance. Although the
environments targeted by those work are different from the
HEC platforms targeted by FlexIO, most placement

0

10

20

30

40

50

60

70

80

360

380

400

420

440

460

480

500

No Plug-in Select 1 Select 3 Select 7

D
at

a
Si

ze
 (G

B
yt

es
)

Ti
m

e
(S

ec
on

ds
)

Simulation Blocking I/O
Simulation Compute
Data Movement Volume

Figure 10. Performance Impact of Data Selection Plug-in to Simulation.

0 10 20 30 40 50

Simulation

Staging Server

Simulation

Staging Server

Time (Seconds)

Compute Blocking I/O Data Fetch File Dump

Before sampling

After sampling

Figure 11. Load Shedding to Adapt to Slow Staging Server. GTS runs

on 128 cores and Staging server runs on 16 cores on Smoky.

329

algorithms can be supported by FlexIO thanks to its diverse
placement options and performance monitoring information.

There have emerged many data intensive computing
platforms such as IBM’s System S streaming system [15],
SciDB [37], and Hadoop/MapReduce-related systems (e.g.,
SciHadoop [6], Himach [40], and SciMATE [44]). Those are
self-contained frameworks with specific programming
models and built-in runtime to manage computation
distribution. FlexIO as an I/O middleware is beneficial to
those frameworks in that they may leverage FlexIO to couple
with simulation for online data processing and enjoy the
location-flexibility brought by FlexIO.

Scientific workflow systems like Pegasus [9] and Kepler
[25] are often used to orchestrate the execution of analysis
tasks. They mainly use files as the data exchange
mechanism. The explosive growth of scientific data,
however, can easily stress the I/O system and overwhelm
overall workflow performance. Therefore, it is expected that
more and more analysis will be deployed online and run in
situ with simulation, especially those which can achieve
early data reduction or prepare data for better use by
downstream analyses. FlexIO can be readily integrated with
scientific workflow systems to enable such online usage.

At the implementation level, our shared memory
transport borrows cache optimizations from FastForward’s
lock-free queue [17]. There is also similar work on high
performance MPI intra-node communication [7][8]. Besides,
although MPI may be used to achieve similar flexibility as
FlexIO, MPI does not support seamless switch to file I/O,
and the code coupling tools built on top of it are shown to
have efficiency issues for large data exchange [50].

VI. CONCLUSIONS AND FUTURE WORK
The FlexIO middleware is designed to flexibly couple

data analytics with simulation on high end machines.
Evaluation results obtained with two large scale scientific
applications GTS and S3D verify the argument for flexible
placement and demonstrates FlexIO’s ability to support
common I/O patterns and diverse placement options. In
addition, various placement policies can be implemented
with FlexIO to effectively tune application performance and
cost. Finally, Data Conditioning Plug-ins enable dynamic
deployment of computation along I/O path based on which
useful runtime functionalities can be implemented.

Our future work includes: 1) enhancing FlexIO to
support dynamic resource allocation and placement policies,
to deal with cases where analytics and/or simulations vary
their runtime behaviors (e.g., Adaptive Mesh Refinement
codes); 2) providing better performance isolation between
simulation and analytics for helper core placement scenario;
3) enhancing FlexIO for various failure situations.

ACKNOWLEDGEMENT
We thank Jay Lofstead from Sandia National Laboratory

for his helpful comments on this paper. We also thank Ray
Grout from National Renewable Energy Laboratory for his
help on S3D application. This work was funded by Scientific
Data Management Center, U.S. Department of Energy, and
Center for Exascale Simulation of Combustion in Turbulence

(ExaCT), U.S. Department of Energy. Additional support
came from the resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory.

REFERENCES
[1] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson, “Dynamic

Function Placement for Data-intensive Cluster Computing,” in Proc.
of Annual conference on USENIX Annual Technical Conference
(ATC’00), 2000.

[2] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just
In Time: Adding Value to the I/O Pipelines of High Performance
Applications with JITstaging,” in Proc. of ACM Symp. on High-
Performance Parallel and Distributed Computing (HPDC’11), 2011.

[3] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and A. Hilton,
“Xchange: Coupling Parallel Applications in A Dynamic
Environment,” in Proc. of IEEE International Conference on Cluster
Computing (Cluster’04), 2004.

[4] J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy, T. Jin, et
al. “Combining In-situ and In-transit Processing to Enable Extreme-
scale Scientific Analysis”. in Proc. of the 2012 ACM/IEEE
Supercomputing (SC 2012), 2012.

[5] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J. G.
Piccinali, “Parallel Computational Steering and Analysis for HPC
Applications Using a Paraview Interface and the HDF5 DSM Virtual
File Driver,” in Proc. of EGPGV, 2011.

[6] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N.
Polyzotis, S. Brandt. “SciHadoop: array-based query processing in
Hadoop”, In Proc. of 2011 International Conference for
Supercomputing (SC '11), 2011.

[7] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud,
“Cache-Efficient, Intranode, Large-Message MPI Communication
with MPICH2-Nemesis,” In Proc. of the 2009 International
Conference on Parallel Processing (ICPP '09), 2009.

[8] L. Chai, P. Lai, J. W. Jin, and D. K. Panda, “Designing an Effiecient
Kernel-level and User-level Hybrid approach for MPI Intra-node
Communication on Multi-core Systems,”, in Proc. of International
Conference on Parallel Processing, (ICPP’08), 2008.

[9] E. Deelman, G. Singh, M. Su, etc. “Pegasus: A Framework for
Mapping Complex Scientific Workflow onto Distributed Systems,” in
Proc. of Journal of Scientific Programming, 2005.

[10] M. Dorier, advised by G. Antoniu, “Damaris - Using Dedicated I/O
Cores for Scalable Post-petascale HPC Simulations,” In Proc. of
International Conference on Supercomputing (ICS’11), 2011.

[11] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and K. Schwan, “A
Type System for High Performance Communication and
Computation,” Proc. The Workshop on D3Science associated with e-
Science11, 2011.

[12] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and K. Schwan,
“Event-based Systems: Opportunities and Challenges at Exascale,” In
Proc. of the 3rd ACM International Conference on Distributed Event-
Based Systems (DEBS’09), 2009.

[13] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B.
Geveci, M. Rasquin, and K. E. Jansen, “The ParaView Coprocessing
Library: A Scalable, General Purpose In Situ Visualization Library,”
In Proc. of IEEE Symp. on Large-Scale Data Analysis and
Visualization (LDAV2011), 2011.

[14] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, et al, “FLASH: An Adaptive Mesh Hydrodynamics Code for
Modelling Astrophysical Thermonuclear Flashes,” Astrophysical
Journal Supplement, 2000, pp 273-334.

[15] B. Gedik, H. Andrade, K. Wu, P. S. Yu, and M. Doo, “SPADE: the
system s declarative stream processing engine,” In Proc. of the 2008
ACM SIGMOD international conference on Management of data
(SIGMOD '08), 2008.

[16] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof,
“VIRACOCHA: An Efficient Parallelization Framework for Large-

330

Scale CFD Post-Processing in Virtual Environments,” in Proc. of
ACM/IEEE Conference on Supercomputing (SC04), 2004.

[17] J. Giacomoni, T. Moseley, and M. Vachharajani, “Fastforward for
Efficient Pipeline Parallelism: A Cache-Optimizaed Concurrent
Lock-free Queue,” in Proc. of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’08), 2008.

[18] ADIOS, http://www.olcf.ornl.gov/center-projects/adios/, 2012.
[19] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,

G. Ganger, E. Riedel, A. Ailamaki, “Diamond: A Storage
Architecture for Early Discard in Interactive Search,” in Proc. of the
3rd USENIX Conference on File and Storage Technologies
(FAST’04), 2004.

[20] E. R. Hawkes, R. Sankaran, and J. H. Chen, “Direct Numerical
Simulation of Turbulent Conbustion: Fundamental Insights towards
Predictive Models”, Journal of Physics: Conference Series, 2005, pp.
65-79.

[21] R. Khan, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K. Wu, H.
Andrade, B. Gedik, “Cola: Optimizing Stream Processing Application
via Graph Partitioning,” In Proc. of the 10th ACM/IFIP/USENIX
International Conference on Middleware (Middleware’09), 2009.

[22] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R.
Samtaney, “Grid-based Parallel Data Streaming Implemented for the
Gyrokinetic Toroidal Code,” Proc. ACM/IEEE Conference on
Supercomputing (SC03), 2003.

[23] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R.
Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” In Proc. of Euro-
Par, 2011.

[24] M. Lin, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C.
Engelmann, and G. Shipman, “Functional Partitioning to Optimize
End-to-End Performance on Many-core Architectures,” Proc.
ACM/IEEE Conference on Supercomputing (SC10), 2010.

[25] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow Management
and the Kepler System,” Special issue: Workflow in Grid Systems,
2006.

[26] J. F. Lofstead, J. Dayal, R. Oldfield, K. Schwan, “D2T: Doubly
Distributed Transactions for High Performance and Distributed
Computing,” In Proc. of IEEE Cluster Computing Conference, 2012.

[27] R. Oldfield, T. Kordenbrock, J. Lofstead. “Developing Integrated
Data Services for Cray Systems with a Gemini Interconnect,” Cray
User Group Meeting 2012.

[28] J. F. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable,
Metadata Rick I/O Methods for Portable High Performance I/O,” In
Proc. of IEEE International Parallel and Distributed Processing Symp
(IPDPS’09), 2009.

[29] P. K. Moreland, R. Oldfield, and S. Klasky, “Examples of In Transit
Visualization,” In Proc. of Petascale Data Analytics Challenges and
Opportunities (PDAC-11), 2011.

[30] R. Oldfield, and D. Kotz, “Improving Data Access for Computational
Grid Application,” In Proc. of IEEE International Conference on
Cluster Computing (Cluster’10), 2010.

[31] PAPI: Performance Application Programming Interface,
http://icl.cs.utk.edu/papi/, 2012.

[32] P. Pietzuch, etc. “Network-aware Operator Placement for Stream-
processing Systems,” In Proc. of the 22nd International Conference
on Data Engineering (ICDE’06), 2006.

[33] J. Piernas, J. Nieplocha, E. J. Felix, “Evaluation of Active Storage
Strategies for the Lustre Parallel File System,” Proc. ACM/IEEE
Conference on Supercomputing (SC07), 2007.

[34] H. Pritchard, I. Gorodetsky, D. Buntinas, “A uGNI-based MPICH2
nemesis network module for the cray XE,” Proc. EuroMPI’11, 2011.

[35] A. Singh, P. Balaji, and W. Feng, “GePSeA: A General-Purpose
Software Acceleration Framework for Lightweight Task Offloading,”
In Proc. of the 38th International Conference on Parallel Processing
(ICPP), 2009.

[36] SCOTCH library. http://www.labri.fr/perso/pelegrin/scotch/, 2012.
[37] E. Soroush, M. Balazinska, D. Wang. “ArrayStore: a storage manager

for complex parallel array processing”, In Proc. of the 2011 ACM
SIGMOD International Conference on Management of data
(SIGMOD '11), 2011.

[38] Y. Sun, G. Zheng, L. V. Kale, T. Jones, R. Olson, “A uGNI-based
Asynchronous Message-driven Runtime System for Cray
Supercomputers with Gemini Interconnect,” Proc. 2012 International
Parallel and Distributed Processing Symposium (IPDPS’12), 2012.

[39] Visualizaiton Toolkit, Opens Source 3D Computer Graphics, Image
Processing and Visualization, http://www.vtk.org.

[40] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud,
M. Ø. Jensen, et al.. “A scalable parallel framework for analyzing
terascale molecular dynamics simulation trajectories”, In Proc. of the
2008 ACM/IEEE conference on Supercomputing (SC '08), 2008.

[41] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K. Ma, and
D. R. O’Hallaron, “Scalable Systems Software – From Mesh
Generation to Scientific Visualization: an End-to-End Approach to
Parallel Supercomputing,” In Proc. of ACM/IEEE Conference on
Supercomputing (SC06), 2006.

[42] V. Vishwanath, M. Hereld, M. E. Papka, “Toward Simulation-Time
Data Analysis and I/O Acceleration on Leadership-Class Systems,” In
Proc. of IEEE Symp. on Large-Scale Data Analysis and Visualization
(LDAV2011), 2011.

[43] VisIt, OpenSource Scientific Visualization and Graphical Anaysis
Tool, https://wci.llnl.gov/codes/visit

[44] Y. Wang, W. Jiang, G. Agrawal. “SciMATE: A Novel MapReduce-
Like Framework for Multiple Scientific Data Formats”, In Proc. of
the 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID '12), 2012.

[45] K. Wu, S. Ahern, E.W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, et al., “FastBit: Interactively Searching Massive Data,” Proc.
SciDAC, Journal of Physics: Conference Series, 2009.

[46] R. Wick, J. S. Chase, and J. S. Vitter, “Distributed Computing with
Load-managed Active Storage,” In Proc. of ACM Symp. on High-
Performance Parallel and Distributed Computing (HPDC’02), 2002.

[47] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam, “Gyro-
kinetic Simulation of Global Trubulent Tranport Properties in
Tokamak Experiments,” Physics of Plasmas, 2006, pp 59-64.

[48] Xpmem, http://code.google.com/p/xpmem/.
[49] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K. Ma, “In-situ

Visualizaiton for Large-scale Combustion Simulations”, In Proc. of
IEEE Computer Graphics and Applications, 2010.

[50] F. Zhang, C. Docan, M. Parashar and S. Kalasky. “Enabling Multi-
Physics Coupled Simulations within the PGAS Programming
Framework”. In Proc. of 11th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing (CCGrid 2011), 2011.

[51] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki and H.
Abbasi. "Enabling In-situ Execution of Coupled Scientific Workflow
on Multi-core Platform". In Proc. of the 26th IEEE International
Parallel & Distributed Processing Symposium (IPDPS’12), 2012.

[52] F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S.
Klasky, N. Podhorszki, “In-Situ I/O Processing: A Case for Location
Flexibility,” In Proc. of 6th Parallel Data Storage Workshop (PDSW
2011), 2011.

[53] F. Zheng, H. Abbasi, C. Docan, J. F. Lofstead, Q. Liu, S. Klasky, M.
P, N. Podhorszki, K. Schwan, and M. Wolf, “Predata-Preparatory
Data Analytics on Peta-scale Machines”, In Proc. of IEEE
International Parallel and Distributed Processing Symp (IPDPS’10),
2010.

[54] F. Zheng, J. Cao, J. Dayal, G. Eisenhauer, K. Schwan, M. Wolf, H.
Abbasi, S. Klasky, N. Podhorszki. "High End Scientific Codes with
Computational I/O Pipelines: Improving their End-to-End
Performance". In Proc. of 2nd International Workshop on Petascale
Data Analytics: Challenges and Opportunites (PDAC-11) 2011.

331

